167 resultados para Alkyl Chlorides
Resumo:
Ionic liquids are organic salts with low melting points. Many of these compounds are liquid at room temperature in their pure state. Since they have negligible vapor pressure and would not contribute to air pollution, they are being intensively investigated for a variety of applications, including as solvents for reactions and separations, as non-volatile electrolytes, and as heat transfer fluids. We present melting temperatures, glass transition temperatures, decomposition temperatures, heat capacities, and viscosities for a large series of pyridinium-based ionic liquids. For comparison, we include data for several imidazolium and quaternary ammonium salts. Many of the compounds do not crystallize, but form glasses at temperatures between 188 K and 223 K. The thermal stability is largely determined by the coordinating ability of the anion, with ionic liquids made with the least coordinating anions, like bis(trifluoromethylsulfonyl)imide, having the best thermal stability. In particular, dimethylaminopyridinium bis(trifluoromethylsulfonyl)imide salts have some of the best thermal stabilities of any ionic liquid compounds investigated to date. Heat capacities increase approximately linearly with increasing molar mass, which corresponds with increasing numbers of translational, vibrational, and rotational modes. Viscosities generally increase with increasing number and length of alkyl substituents on the cation, with the pyridinium salts typically being slightly more viscous than the equivalent imidazolium compounds. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Twelve novel 1,3-dialkylimidazolium salts containing strongly electron-withdrawing nitro-and cyano-functionalities directly appended to the cationic heterocyclic rings have been synthesized; the influences of the substituents on both formation and thermal properties of the resultant ionic liquids have been determined by DSC, TGA, and single crystal X-ray diffraction, showing that an electron-withdrawing nitro-substituent can be successfully appended and has a similar influence on the melting behaviour as that of corresponding methyl group substitution. Synthesis of di-, or trinitro-substituted 1,3-dialkylimidazolium cations was unsuccessful due to the resistance of dinitro-substituted imidazoles to undergo either N-alkylation or protonation, while 1-alkyl- 4,5-dicyanoimidazoles were successfully alkylated to obtain 1,3-dialkyl-4,5-dicyanoimidazolium salts. Five crystal structures ( one of each cation type) show that, in the solid state, the NO2-group has little significant effect, beyond the steric contribution, on the crystal packing.
Resumo:
A computational approach to predict the thermodynamics for forming a variety of imidazolium-based salts and ionic liquids from typical starting materials is described. The gas-phase proton and methyl cation acidities of several protonating and methylating agents, as well as the proton and methyl cation affinities of many important methyl-, nitro-, and cyano- substituted imidazoles, have been calculated reliably by using the computationally feasible DFT (B3LYP) and MP2 (extrapolated to the complete basis set limit) methods. These accurately calculated proton and methyl cation affinities of neutrals and anions are used in conjunction with an empirical approach based on molecular volumes to estimate the lattice enthalpies and entropies of ionic liquids, organic solids, and organic liquids. These quantities were used to construct a thermodynamic cycle for salt formation to reliably predict the ability to synthesize a variety of salts including ones with potentially high energetic densities. An adjustment of the gas phase thermodynamic cycle to account for solid- and liquid-phase chemistries provides the best overall assessment of salt formation and stability. This has been applied to imidazoles (the cation to be formed) with alkyl, nitro, and cyano substituents. The proton and methyl cation donors studied were as follows: HCl, HBr, HI, (HO)(2)SO2, HSO3CF3 (TfOH), and HSO3(C6H4)CH3 (TsOH); CH3Cl, CH3Br, CH3I, (CH3O)(2)SO2, CH3SO3CF3 (TfOCH3) and CH3SO3(C6H4)CH3 (TsOCH3). As substitution of the cation with electron-withdrawing groups increases, the triflate reagents appear to be the best overall choice as protonating and methylating agents. Even stronger alkylating agents should be considered to enhance the chances of synthetic success. When using the enthalpies of reaction for the gas-phase reactants (eq 6) to form a salt, a cutoff value of - 13 kcal mol(-1) or lower (more negative) should be used as the minimum value for predicting whether a salt can be synthesized.
Resumo:
The solubility of water in the hydrophobic 1-alkyl-3-methylimidazolium hexafluorophosphate (alkyl = butyl, hexyl, and octyl) ionic liquids, can be significantly increased in the presence of ethanol as a co-solute. 1-Hexyl-3-methylimidazolium hexafluorophosphate and 1-octyl-3-methylimidazolium hexafluorophosphate are completely miscible with ethanol, and immiscible with water, whereas 1-butyl-3-methylimidazolium hexafluorophosphate is totally miscible with aqueous ethanol only between 0.5-0.9 mole fraction ethanol at 25degreesC. At higher and lower mole fraction of ethanol, the aqueous and IL components are only partially miscible and a biphasic system is obtained upon mixing equal volumes of the IL and aqueous ethanol. The observation of a large range of total miscibility between water and the IL in the three-component system has important implications for purifications and separations from IL.
Resumo:
New low-cost ionic liquids containing methyl- and ethyl-sulfate anions can be easily and efficiently prepared under ambient conditions by the reaction of 1-alkylimidazoles with dimethyl sulfate and diethyl sulfate. The preparation and characterization of a series of 1,3-dialkylimidazolium alkyl sulfate and 1,2,3-trialkylimidazolium alkyl sulfate salts are reported. 1,3-Dialkylimidazolium salts containing at least one non-methyl N-alkyl substituent are liquids at, or below room, temperature. Three salts were crystalline at room temperature, the single crystal X-ray structure of 1,3-dimethylimidazolium methyl sulfate was determined and shows the formation of discrete ribbons comprising of two anion-cation hydrogen-bonded chains linked via intra-chain hydrogen-bonding, but little, or no inter-ribbon hydrogen-bonding. The salts are stable, water soluble, inherently 'chloride-free', display an electrochemical window of greater than 4 V, and can be used as alternatives to the corresponding halide salts in metathesis reactions to prepare other ionic liquids including 1-butyl-3-methylimidazolium hexafluorophosphate.
Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness?
Resumo:
Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P
Resumo:
The effects of the reuse of ‘Formtex’ Controlled Permeability Formwork (CPF) liner on strength and durability properties of concrete were investigated at two different water-cement ratios and the results are reported in this paper. Test blocks were cast using the CPF on one side and impermeable formwork (IF) on the opposite side of the mould so that direct comparisons could be made between the two. The strength was assessed using the Limpet pulloff tester and both the air permeability and the water absorption (sorptivity) were measured using the Autoclam Permeability System. Both these instruments measured the ‘covercrete’ properties. In addition, cores cut from the test specimens were subjected to an accelerated carbonation test and a chloride exposure test. The results showed that the ‘Formtex’ CPF increases the surface strength and the durability of concrete compared to the IF. There was an almost complete elimination of blowholes. The permeability of concrete decreased and its resistance to the ingress of both carbon dioxide and chlorides increased when CPF was used. The beneficial effects of the Formtex CPF were most evident in concrete of higher water-cement ratio. With the reuse of the Formtex liner twice, that is a total of three uses, the performance of the CPF to improve the properties of concrete remained almost the same. In this research the CPF liner was cleaned thoroughly between each use, which must be adhered to for site applications for reproducing the beneficial effects observed in the laboratory.
Resumo:
The near-infrared luminescence properties of three (E)-N-hexadecyl-N',N'-dimethylamino-stilbazolium tetrakis(1-phenyl-3-methyl-4-benzoyl-5-pyrazolonato) lanthanide(III) complexes are described. These three complexes, containing trivalent neodymium, erbium and ytterbium, respectively, show near-infrared luminescence in acetonitrile solution upon UV irradiation. Luminescence decay times have been measured. The complexes consist of a positively charged hemicyanine chromophore with a long alkyl chain and a tetrakis(pyrazolonato) lanthanide(III) anion. Because of the absence of an alpha-hydrogen atom in the pyrazolonato ligands, and because of the saturation of the coordination sphere by four bidentate ligands, the luminescence properties are enhanced when compared to, e.g. quinolinate complexes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we demonstrate that the effect of aromatic C-F substitution in ligands does not always abide by conventional wisdom for ligand design to enhance sensitisation for visible lanthanide emission, in contrast with NIR emission for which the same effect coupled with shell formation leads to unprecedented long luminescence lifetimes. We have chosen an imidodiphosphinate ligand, N-{P,P-di-(pentafluorophinoyl)}-P,P-dipentafluoro-phenylphosphinimidic acid (HF(20)tpip), to form ideal fluorinated shells about all visible- and NIR-emitting lanthanides. The shell, formed by three ligands, comprises twelve fully fluorinated aryl sensitiser groups, yet no-high energy X-H vibrations that quench lanthanide emission. The synthesis, full characterisation including X-ray and NMR analysis as well as the photophysical properties of the emissive complexes [Ln(F(20)tpip)(3)], in which Ln=Nd, Sm, Eu, Gd, Tb, Dy, Er, Yb, Y, Gd, are reported. The photophysical results contrast previous studies, in which fluorination of alkyl chains tends to lead to more emissive lanthanide complexes for both visible and NIR emission. Analysis of the fluorescence properties of the HF(20)tpip and [Gd(F(20)tpip)(3)] reveals that there is a low-lying state at around 715 nm that is responsible for partially quenching of the signal of the visible emitting lanthanides and we attribute it to a pi-sigma* state. However, all visible emitting lanthanides have long lifetimes and unexpectedly the [Dy(F(20)tpip)(3)] complex shows a lifetime of 0.3 ms, indicating that the elimination of high-energy vibrations from the ligand framework is particularly favourable for Dy. The NIR emitting lanthanides show strong emission signals in powder and solution with unprecedented lifetimes. The luminescence lifetimes of [Nd(F(20)tpip)(3)], [Er(F(20)tpip)(3)] and [Yb(F(20)tpip)(3)] in deuteurated acetonitrile are 44, 741 and 1111 mu s. The highest value observed for the [Yb(F(20)tpip)(3)] complex is more than half the value of the Yb ion radiative lifetime.
Resumo:
The alkali-metal salts of meta-substituted benzoic acids exhibit a smectic A mesophase at high temperatures. These compounds are examples of liquid crystals without terminal alkyl chains. The influence of the metal ion and of the type of substituents on the transition temperatures is discussed. Compounds with the substituent in the ortho- and para-positions are non-mesomorphic. The crystal structures of the compounds Rb(C7H4ClO2)(C7H4ClO2H), Na(C7H4IO2)(H2O), K(C7H4ClO2)(C7H4ClO2H) and Rb(C7H4BrO2)(C7H4BrO2H) have been determined by X-ray crystallography. These compounds possess a layerlike structure in the solid state. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005)
Resumo:
It is shown that ionic liquids are promising solvents for near-infrared emitting lanthanide complexes, because ionic liquids are polar non-coordinating solvents that can solubilize lanthanide complexes. Neodymium(III) tosylate, bromide, triflate and sulfonylimide complexes were dissolved in 1-alkyl-3-methylimidazolium ionic liquids that contain the same anion as the neodymium(III) complexes. Near-infrared luminescence spectra of these neodymium(III) salts were measured by direct excitation of the neodymium(III) ion. The absorption spectra show detailed crystal-field fine structure and Judd-Ofelt parameters have been determined. Intense near-infrared luminescence was observed upon ligand excitation for neodymium(III) complexes with 1,10-phenanthroline or beta-diketonate ligands. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A range of ionic liquids was prepared by mixing 1-alkyl-3-methylimidazolium chloride with gallium(III) chloride or indium(III) chloride in various ratios, producing both acidic and basic compositions. Their speciation was investigated using Ga-71 NMR or In-115 NMR spectroscopy, as well as extended X-ray absorption fine structure. Polynuclear Lewis acidic anions, [MxCl3x+1](-), were found in chlorogallate(III) ionic liquids, but not in chloroindate(III) systems.
Resumo:
Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.
Resumo:
The prepn. and characterization of a series of ionic liqs. based on S-alkylthiouronium cations prepd. from thiourea, 1,3-dimethylthiourea, 1,3-diethylthiourea and 1,3-tetramethylthiourea coupled with bis{(trifluoromethane)sulfonyl}imide, bromide, methylsulfate or ethylsulfate anions are reported. All are liqs. at room temp. or solids with m.ps. close to room temp., except for the bromide salts, which have m.ps. below 92 °C. Systematic variation in the N- and S-alkyl substituents demonstrates how the phys. properties of these ionic liqs. can be readily controlled. The mutual miscibility limits of representative examples with octane, dodecane and toluene have been detd. as a function of temp., and the extn. of dibenzothiophene from dodecane as a model for desulfurisation of diesel has been investigated.
Resumo:
A range of chloroindate(III) ionic liquid systems was prepared by mixing of 1-alkyl-3-methylimidazolium chloride with indium(III) chloride in various ratios, expressed as the mol fraction of indium(III) chloride, chi(InCl3). For chi(InCl3) 0.50, the products were biphasic (suspensions of a solid in an ionic liquid). Speciation of these chloroindate(III) systems was carried out using a wide range of techniques: differential scanning calorimetry (DSC), polarised optical microscopy (POM), liquid-state and solid-state In-115 NMR spectroscopy, X-ray photoelectron spectroscopy (XPS) and extended X-ray absorption fine structure (EXAFS). Ionic liquids prepared using an excess of the organic chloride (chi(InCl3) 0.5) contained indium(III) chloride powder suspended in a neutral tetrachloroindate ionic liquid.