183 resultados para (Acmella oleracea (L) R.K. Jansen), fertilizer
Resumo:
Dielectronic recombination was investigated for He+, the simplest ion for which this process is possible. This work was done using the light-ion storage ring and electron cooler at the Indiana University Cyclotron Facility. Resonant recombination yields resulting from 1s +e- --> nln'l' transitions were observed with sufficient resolution (about 1 eV in the center of mass) to isolate and obtain cross sections for the 2s 2p 3P0 and 2p2 1D terms. The measured cross sections, integrated over the DELTAn = 1 2ln'l' states, agree in magnitude with theoretical calculations. Additionally, DELTAn = 2 dielectronic recombination events associated with 3ln'l' intermediate states were observed.
Resumo:
The R-matrix incorporating time (RMT) method is a method developed recently for solving the time-dependent Schrödinger equation for multielectron atomic systems exposed to intense short-pulse laser light. We have employed the RMT method to investigate the time delay in the photoemission of an electron liberated from a 2p orbital in a neon atom with respect to one released from a 2s orbital following absorption of an attosecond xuv pulse. Time delays due to xuv pulses in the range 76-105 eV are presented. For an xuv pulse at the experimentally relevant energy of 105.2 eV, we calculate the time delay to be 10.2±1.3 attoseconds (as), somewhat larger than estimated by other theoretical calculations, but still a factor of 2 smaller than experiment. We repeated the calculation for a photon energy of 89.8 eV with a larger basis set capable of modeling correlated-electron dynamics within the neon atom and the residual Ne ion. A time delay of 14.5±1.5 as was observed, compared to a 16.7±1.5 as result using a single-configuration representation of the residual Ne+ ion.
Resumo:
Mucosally-administered vaccine strategies are widely investigated as a promising means of preventing HIV infection. This study describes the development of liposomal gel formulations, and novel lyophilised variants, comprising HIV-1 envelope glycoprotein, CN54gp140, encapsulated within neutral, positively charged or negatively charged liposomes. The CN54gp140 liposomes were evaluated for mean vesicle diameter, polydispersity, morphology, zeta potential and antigen encapsulation efficiency before being incorporated into hydroxyethyl cellulose (HEC) aqueous gel and subsequently lyophilised to produce a rod-shaped solid dosage form for practical vaginal application. The lyophilised liposome-HEC rods were evaluated for moisture content and redispersibility in simulated vaginal fluid. Since these rods are designed to revert to gel form following intravaginal application, mucoadhesive, mechanical (compressibility and hardness) and rheological properties of the reformed gels were evaluated. The liposomes exhibited good encapsulation efficiency and the gels demonstrated suitable mucoadhesive strength. The freeze-dried liposome-HEC formulations represent a novel formulation strategy that could offer potential as stable and practical dosage form.
Resumo:
Objectives: To investigate the pharmacokinetics (PK) of maraviroc, a CCR5-targeted HIV-1 entry inhibitor, in rhesus macaques following vaginal administration of various maraviroc-loaded aqueous hydroxyethylcellulose (HEC) gels, and to correlate the PK data with efficacy in a single high-dose vaginal SHIV-162P3 challenge model.
Methods: Maraviroc concentrations in vaginal fluid (Weck-Cel® sponge), vaginal tissue (punch biopsy) and plasma were assessed over 72 h following single dose vaginal application of various maraviroc-loaded HEC gels. The range of maraviroc gel concentrations was sufficiently broad (0.003 – 3.3% w/w) such that test gels included both fully solubilised and predominantly dispersed formulations. The efficacy of the HEC gels against a single high dose vaginal SHIV-162P3 challenge was also measured, and correlated with the PK concentrations.
Results: Maraviroc concentrations in vaginal fluid (range 104 – 107 ng/mL), vaginal tissue (100-1200 ng/g) and plasma (< 102 ng/mL) were highly dependent on maraviroc gel loading, irrespective of the form of the maraviroc component within the gel (solubilised vs. dispersed). Fluid and plasma concentrations were generally highest 0.5 or 2 h after gel application, before declining steadily out to 72 h. Maraviroc concentrations in the various biological compartments correlated strongly with the extent of protection against vaginal SHIV-162P3 challenge. Complete protection was achieved with a 3.3% w/w maraviroc gel.
Conclusions: A high degree of correlation between PK and efficacy was observed. Based on the data obtained with the 3.3% w/w maraviroc gel, maintenance of vaginal fluid and tissue levels in the order of 107 ng/mL and 103 ng/g, respectively, are required for complete protection with this compound.
FUS expression alters the differentiation response to all-trans retinoic acid in NB4 and NB4R2 cells
Resumo:
The FUS gene is overexpressed in acute myeloid leukaemia (AML) patients and has roles in transcription and mRNA processing. We used ectopic expression of FUS and FUS antisense sequences to assess the effect of modulation of FUS expression in all-trans retinoic acid (ATRA)-sensitive (NB4) and insensitive (NB4R2) human acute promyelocytic (APL) cell lines which express the t(15:17) translocation. Growth, viability and differentiation patterns were maintained, but the expression of the FUS antisense construct in both the cell lines altered the response to ATRA: the previously ATRA-sensitive NB4 cells exhibited resistance; whilst the previously resistant NB4R2 cells showed a differentiation response to treatment.
Resumo:
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Resumo:
Vaginal rings are currently being developed for the long-term (at least 30 days) continuous delivery of microbicides against human immunodeficiency virus (HIV). Research to date has mostly focused on devices containing a single antiretroviral compound, exemplified by the 25 mg dapivirine ring currently being evaluated in a Phase III clinical study. However, there is a strong clinical rationale for combining antiretrovirals with different mechanisms of action in a bid to increase breadth of protection and limit the emergence of resistant strains. Here we report the development of a combination antiretroviral silicone elastomer matrix-type vaginal ring for simultaneous controlled release of dapivirine, a non-nucleoside reverse transcriptase inhibitor, and maraviroc, a CCR5-targeted HIV-1 entry inhibitor. Vaginal rings loaded with 25 mg dapivirine and various quantities of maraviroc (50– 400 mg) were manufactured and in vitro release assessed. The 25 mg dapivirine and 100 mg maraviroc formulation was selected for further study. A 24-month pharmaceutical stability evaluation was conducted, indicating good product stability in terms of in vitro release, content assay, mechanical properties and related substances. This combination ring product has now progressed to Phase I clinical testing.
Resumo:
Chemoenzymatic dynamic kinetic resolution (DKR) of rac-1-phenyl ethanol into R-1-phenylethanol acetate was investigated with emphasis on the minimization of side reactions. The organometallic hydrogen transfer (racemization) catalyst was varied, and this was observed to alter the rate and extent of oxidation of the alcohol to form ketone side products. The performance of highly active catalyst [(pentamethylcyclopentadienyl) IrCl2(1-benzyl,3-methyl-imidazol-2-ylidene)] was found to depend on the batch of lipase B used. The interaction between the bio- and chemo-catalysts was reduced by employing physical entrapment of the enzyme in silica using a sol-gel process. The nature of the gelation method was found to be important, with an alkaline method preferred, as an acidic method was found to initiate a further side reaction, the acid catalyzed dehydration of the secondary alcohol. The acidic gel was found to be a heterogeneous solid acid.