102 resultados para thermo- responsive formulation
Resumo:
Background: The use of Objective Structured Clinical Examination (OSCE) in Pharmacy has been explored; however this is the first attempt in Queen’s University School of Pharmacy, Belfast to assess students via this method in a module where chemistry is the main discipline.
Aims: To devise an OSCE to assess undergraduate ability to check extemporaneously dispensed products for clinical and formulation errors. This activity also aims to consider whether it is a viable method of assessment in such a science-based class, from a staff and student perspective.
Method: Students rotated around a number of stations, performing a check of the product, corresponding prescription and formulation record sheet detailing the theory behind the formulation. They were assessed on their ability to spot intentional mistakes at each one.
Results: Of the 79 students questioned, 95% indicated that OSCE made them aware of the importance of the clinical check carried out by the pharmacist. Nearly all of the undergraduates (72 out of 79) felt that OSCE made them aware of the type of mistakes that students make in class. Most (5 out of 7) of the academic team members strongly agreed that it made students aware of ‘point of dispensing’ checks carried out by pharmacists, in addition to helping them to prepare for their exam.
Conclusion: OSCE assesses both scientific and formulation skills, and has increased the diversity of assessment of this module, bringing with it many additional benefits for the undergraduates since it measures their ability to exercise professional judgement in a time- constrained environment and, in this way, mirrors the conditions many pharmacists work within.
Resumo:
Traditionally, the optimization of a turbomachinery engine casing for tip clearance has involved either twodimensional transient thermomechanical simulations or three-dimensional mechanical simulations. This paper illustrates that three-dimensional transient whole-engine thermomechanical simulations can be used within tip clearance optimizations and that the efficiency of such optimizations can be improved when a multifidelity surrogate modeling approach is employed. These simulations are employed in conjunction with a rotor suboptimization using surrogate models of rotor-dynamics performance, stress, mass and transient displacements, and an engine parameterization.
Resumo:
This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.
Resumo:
Herein we report the synthesis, characterisation and hydrolytic release kinetics of a suite of novel, polymerisable ester quinolone conjugates with varying alkenyl chain lengths. Hydrolysis was shown to proceed up to 17-fold faster upon elevation of pH from neutral to pH 9.29, making these conjugates attractive for the development of 'designer' infection-resistant urinary biomaterials exploiting the increase in urine pH reported at the onset of catheter-associated infection to trigger drug release. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The search for ideal biomaterials is still on-going for tissue regeneration. In this study, blends of Poly ε-caprolactone (PCL) with Poly l-lactic acid (PLLA), Nalidixic Acid (NA) and Polyethylene glycol (PEG) were prepared. Mechanical and thermal properties of the blends were investigated by tensile and flexural analysis, DSC, TGA, WXRD, MFI, BET, SEM and hot stage optical microscopy. Results showed that the loading of PLLA caused a significant decrease in tensile strength and almost total eradication of the elongation at break of PCL matrix, especially after PEG and NA addition. Increased stiffness was also noted with additional NA, PEG and PLLA, resulting in an increase in the flexural modulus of the blends.
Isothermal degradation indicated that bulk PCL, PLLA and the blends were thermally stable at 200°C for the duration of 2h making extrusion of the blends at this temperature viable. Morphological study showed that increasing the PLLA content and addition of the very low viscosity PEG and powder NA decreased the Melt Flow Indexer and increased the viscosity.
At the higher temperature the PLLA begins to soften and eventually melts allowing for increased flow and, coupling this with, the natural increase in MFI caused by temperature is enhanced further. The PEG and NA addition increased dramatically the pore volume which is important for cell growth and flow transport of nutrients and metabolic waste.
Resumo:
Inhaled antibiotics, such as tobramycin, for the treatment of Pseudomonas aeruginosa pulmonary infections are associated with the increase in life expectancy seen in cystic fibrosis (CF) patients over recent years. However, the effectiveness of this aminoglycoside is still limited by its inability to penetrate the thick DNA-rich mucus in the lungs of these patients, leading to low antibiotic exposure to resident bacteria. In this study, we created novel polymeric nanoparticle (NP) delivery vehicles for tobramycin. Using isothermal titration calorimetry, we showed that tobramycin binds with alginate polymer and, by exploiting this interaction, optimised the production of tobramycin alginate/chitosan NPs. It was established that NP antimicrobial activity against P. aeruginosa PA01 was equivalent to unencapsulated tobramycin (minimum inhibitory concentration 0.625 mg/L). Galleria mellonella was employed as an in vivo model for P. aeruginosa infection. Survival rates of 90% were observed following injection of NPs, inferring low NP toxicity. After infection with P. aeruginosa, we showed that a lethal inoculum was effectively cleared by tobramycin NPs in a dose dependent manner. Crucially, a treatment with NPs prior to infection provided a longer window of antibiotic protection, doubling survival rates from 40% with free tobramycin to 80% with NP treatment. Tobramycin NPs were then functionalised with dornase alfa (recombinant human deoxyribonuclease I, DNase), demonstrating DNA degradation and improved NP penetration of CF sputum. Following incubation with CF sputum, tobramycin NPs both with and without DNase functionalisation, exhibited anti-pseudomonal effects. Overall, this work demonstrates the production of effective antimicrobial NPs, which may have clinical utility as mucus-penetrating tobramycin delivery vehicles, combining two widely used CF therapeutics into a single NP formulation. This nano-antibiotic represents a strategy to overcome the mucus barrier, increase local drug concentrations, avoid systemic adverse effects and improve outcomes for pulmonary infections in CF.
Resumo:
Background: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants.
Results: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements.
Conclusions: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease.
Resumo:
Objectives: This article uses conventional and newly extended solubility parameter (δ) methods to identify polymeric materials capable of forming amorphous dispersions with itraconazole (itz). Methods: Combinations of itz and Soluplus, Eudragit E PO (EPO), Kollidon 17PF (17PF) or Kollidon VA64 (VA64) were prepared as amorphous solid dispersions using quench cooling and hot melt extrusion. Storage stability was evaluated under a range of conditions using differential scanning calorimetry and powder X-ray diffraction. Key findings: The rank order of itz miscibility with polymers using both conventional and novel δ-based approaches was 17PF > VA64 > Soluplus > EPO, and the application of the Flory–Huggins lattice model to itz–excipient binary systems corroborated the findings. The solid-state characterisation analyses of the formulations manufactured by melt extrusion correlated well with pre-formulation screening. Long-term storage studies showed that the physical stability of 17PF/vitamin E TPGS–itz was poor compared with Soluplus and VA64 formulations, and for EPO/itz systems variation in stability may be observed depending on the preparation method. Conclusion: Results have demonstrated that although δ-based screening may be useful in predicting the initial state of amorphous solid dispersions, assessment of the physical behaviour of the formulations at relevant temperatures may be more appropriate for the successful development of commercially acceptable amorphous drug products.
Resumo:
Objectives: Amorphous drug forms provide a useful method of enhancing the dissolution performance of poorly water-soluble drugs; however, they are inherently unstable. In this article, we have used Flory–Huggins theory to predict drug solubility and miscibility in polymer candidates, and used this information to compare spray drying and melt extrusion as processes to manufacture solid dispersions.
Method: Solid dispersions were characterised using a combination of thermal (thermogravimetric analysis and differential scanning calorimetry) and spectroscopic (Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction methods.
Key Findings: Spray drying permitted generation of amorphous solid dispersions to be produced across a wider drug concentration than melt extrusion. Melt extrusion provided sufficient energy for more intimate mixing to be achieved between drug and polymer, which may improve physical stability. It was also confirmed that stronger drug–polymer interactions might be generated through melt extrusion. Remixing and dissolution of recrystallised felodipine into the polymeric matrices did occur during the modulated differential scanning calorimetry analysis, but the complementary information provided from FTIR confirms that all freshly prepared spray-dried samples were amorphous with the existence of amorphous drug domains within high drug-loaded samples.
Conclusion: Using temperature–composition phase diagrams to probe the relevance of temperature and drug composition in specific polymer candidates facilitates polymer screening for the purpose of formulating solid dispersions.