108 resultados para stimulated Raman scatting
Resumo:
Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3600658]
Resumo:
Surface-enhanced Raman (SERS) spectra of deoxyadenosine and 5'-dAMP on Ag and Au surfaces showed the protonation of both compounds in the N1 position, their orientation geometry on metal surfaces, and the formation of Ag+ complexes at alkaline pH on hydroxylamine-reduced Ag colloids. Interestingly, substitution at the N9 position caused dramatic changes in the relative band intensities within the spectra of both deoxyadenosine and 5'-dAMP compared to that of simple adenine, although they continued to be dominated by adenine vibrations. Concentration-dependent spectra of 5'-dAMP were observed, which matched that of adenine at high concentrations and that of deoxyadenosine at lower concentration (
Resumo:
We present surface enhanced Raman optical activity (SEROA), as well as Raman, SERS and ROA, spectra of D- and L-ribose. By employing a gel forming polyacrylic acid to control colloid aggregation and associated birefringent artefacts we observe the first definitive proof of SEROA through measurement of mirror image bands for the two enantiomers.
Resumo:
The SERS spectra of adenine recorded under a broad range of pH values and concentrations using both silver and gold colloids provided evidence for the existence of several distinct species. At high concentration (0.5-10 ppm), the spectra recorded between pH 1 and 11 showed only two distinct spectra, rather than the three forms that would be expected for a compound with two pK(a) values of 4.2 and 9.8. The spectra at neutral and alkaline pH were identical and assigned to the deprotonated form of adenine on the basis of DFT calculations, isotope shifts, and comparison with the normal Raman spectra of neutral and deprotonated adenine. The spectra at acidic pH were different, consistent with adenine protonation. Neutral adenine was not detected at any pH studied. At low adenine concentration (
Resumo:
DNA sequences attached to Au nanoparticles via thiol linkers stand up from the surface, giving preferential enhancement of the adenine ring breathing SERS band. Non-specific binding via the nucleobases reorients the DNA, reducing this effect. This change in intensity on reorientation was utilised for label-free detection of hybridization of a molecular beacon.
Resumo:
Multilayer samples of white architectural paint potentially have very high evidential value in forensic casework, because the probability that two unrelated samples will have the same sequence of layers is extremely low. However, discrimination between the different layers using optical microscopy is often difficult or impossible. Here, lateral scanning Raman spectroscopy has been used to chemically map the cross-sections of multilayer white paint chips. It was found that the spectra did allow the different layers to be delineated on the basis of their spectral features. The boundaries between different layers were not as sharp as expected, with transitions occurring over length scales of > 20 µm, even with laser spot diameters <4 µm. However, the blurring of the boundaries was not so large as to prevent recording and identification of spectra from each of the layers in the samples. This method clearly provides excellent discrimination between different multilayer white paint samples and can readily be incorporated into existing procedures for examination of paint transfer evidence.
Resumo:
Singles only: DNA sequences can be induced to spontaneously adsorb to the surfaces of Ag colloids through their nucleotide side chains (see picture). The SERS spectra of these nonspecifically bound strands are sufficiently reproducible that they can be used to identify single-base mismatches in short (25-mer and 23-mer) strands. Subtracting the spectra of different DNA sequences results in difference spectra that contain features corresponding to the exchanged nucleotides.
Resumo:
Raman spectroscopy with far-red excitation has been investigated as a simple and rapid technique for composition profiling of seized ecstasy (MDMA, N-methyl-3,4-methylenedioxyamphetamine) tablets. The spectra obtained are rich in vibrational bands and allow the active drug and excipient used to bulk the tablets to be identified. Relative band heights can be used to determine drug/excipient ratios and the degree of hydration of the drug while the fact that 50 tablets per hour can be analysed allows large numbers of spectra to be recorded. The ability of Raman spectroscopy to distinguish between ecstasy tablets on the basis of their chemical composition is illustrated here by a sample set of 400 tablets taken from a large seizure of > 50000 tablets that were found in eight large bags. The tablets are all similar in appearance and carry the same logo. Conventional analysis by GC-MS showed they contained MDMA. Initial Raman studies of samples from each of the eight bags showed that despite some tablet-to-tablet variation within each bag the contents could be classified on the basis of the excipients used. The tablets in five of the bags were sorbitol-based, two were cellulose-based and one bag contained tablets with a glucose excipient. More extensive analysis of 50 tablets from each of a representative series of sample bags gave distribution profiles that showed the contents of each bag were approximately normally distributed about a mean value, rather than being mixtures of several discrete types. Two of the sorbitol-containing sample sets were indistinguishable while a third was similar but not identical to these, in that it contained the same excipient and MDMA with the same degree of hydration but had a slightly different MDMA/sorbitol ratio. The cellulose-based samples were badly manufactured and showed considerable tablet-to-tablet variation in their drug/excipient ratio while the glucose-based tablets had a tight distribution in their drug/excipient ratios. The degree of hydration in the MDMA feedstocks used to manufacture the cellulose-, glucose- and sorbitol-based tablets were all different from each other. This study, because it centres on a single seizure of physically similar tablets with the same active drug, highlights the fact that simple physical descriptions coupled with active drug content do not in themselves fully characterize the nature of the seized materials. There is considerable variation in the composition of the tablets within this single seizure and the fact that this variation can be detected from Raman spectra demonstrates that the potential benefits of obtaining highly detailed spectra can indeed translate into information that is not readily available from other methods but would be useful for tracing of drug distribution networks.
Resumo:
The resonance Raman spectra of the lowest lying singlet (S-1) state of free-base tetraphenylporphyrin and seven of its isotopomers were recorded under pump-and-probe conditions with a time delay of -2 ns between pump and probe laser pulses, In the S-1 spectra of the isotopomers, as in the ground state, there are dramatic splittings of what appear to be single bands in the natural isotopic abundance spectrum. The most structurally significant bands of the S-1 state were assigned on the basis of the isotope data, In some cases it was necessary to curve fit unresolved bands in the excited-state spectra in order to account for observed intensity ratios and to rationalize isotope shifts, The changes in band positions on excitation to the S-1 state were compared with those from earlier studies on the T-1 state. The changes in band positions were found to be similar For both excited states. Most notable was the similar shift in nu(2), the most widely used marker band for orbital character. The data are interpreted as implying that the lowest lying singlet state is a configuration interaction admixture of b(1u)b(2g) + a(u)b(3g) configurations with the coefficients weighted heavily in favour of b(1n)b(2g), which Is the configuration of the T-1 state. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
This study examined the effects of polymeric components on the physical state of chlorhexidine within bioadhesive, semisolid formulations using Raman spectroscopy. Semisolid formulations were prepared in which chlorhexidine base (CHX, 5%w/w, particle size
Resumo:
Raman spectroscopy with far-red excitation has been used to study seized, tableted samples of MDMA (N-methyl-3,4-methylenedioxyamphetamine) and related compounds (MDA, MDEA, MBDB, 2C-B and amphetamine sulfate), as well as pure standards of these drugs. We have found that by using far-red (785 nm) excitation the level of fluorescence background even in untreated seized samples is sufficiently low that there is little difficulty in obtaining good quality data with moderate 2 min data accumulation times. The spectra can be used to distinguish between even chemically-similar substances, such as the geometrical isomers MDEA and MBDB, and between different polymorphic/hydrated forms of the same drug. Moreover, these differences can be found even in directly recorded spectra of seized samples which have been bulked with other materials, giving a rapid and non-destructive method for drug identification. The spectra can be processed to give unambiguous identification of both drug and excipients (even when more than one compound has been used as the bulking agent) and the relative intensities of drug and excipient bands can be used for quantitative or at least semi-quantitative analysis. Finally, the simple nature of the measurements lends itself to automatic sample handling so that sample throughputs of 20 samples per hour can be achieved with no real difficulty.
Resumo:
The Stein Collection in the British Library contains the Diamond Sutra, the world's oldest, dated, printed document. The paper of the Diamond Sutra and other documents from the Stein collection is believed to be dyed yellow by a natural extract, called huangbo, from the bark of Phellodendron amurense, which contains three major yellow chromophores: berberine, palmatine, and jatrorrhizine, Conservation of these documents requires definite information on the chemical composition of the dyes but no suitable, completely noninvasive analytical method is known. Here we report resonance Raman studies of a series of prate dyes, of plant materials and extracts, and of dyed ancient and modern paper samples. Resonance Raman spectroscopy is used to enhance the spectra of the dyes over the signals from the paper matrixes in which they are held. The samples an give resonance Raman spectra which are dominated by intense fluorescence, but by using SSRS (subtracted shifted Raman spectroscopy) we have obtained reliable spectra of the pure dyes, native bark from the Phellodendron amurense, modern paper dyed with huangbo extracted from this bark, and ancient paper samples. For both ancient paper samples whose pigment bands were detected, the relative intensities of the bands due to berberine and palmatine suggest that the ancient paper is richer in berberine than its modern counterpart, This is the first nondestructive in situ method for detection of these pigments in manuscripts, and as such has considerable potential benefit for the treatment of irreplaceable documents that are believed to be dyed with huangbo but documents on which conservation work cannot proceed without definite identification of the chemical compounds that they contain.