87 resultados para salt wash member
Automated image analysis for experimental investigations of salt water intrusion in coastal aquifers
Resumo:
A novel methodology has been developed to quantify important saltwater intrusion parameters in a sandbox style experiment using image analysis. Existing methods found in the literature are based mainly on visual observations, which are subjective, labour intensive and limits the temporal and spatial resolutions that can be analysed. A robust error analysis was undertaken to determine the optimum methodology to convert image light intensity to concentration. Results showed that defining a relationship on a pixel-wise basis provided the most accurate image to concentration conversion and allowed quantification of the width of mixing zone between the saltwater and freshwater. A large image sample rate was used to investigate the transient dynamics of saltwater intrusion, which rendered analysis by visual observation unsuitable. This paper presents the methodologies developed to minimise human input and promote autonomy, provide high resolution image to concentration conversion and allow the quantification of intrusion parameters under transient conditions.
Resumo:
A salt weathering simulation using a mix of sodium chloride (5%) and magnesium sulphate (5%) in a salt corrosion cabinet and five granular limestones is described. Progressive surface loss from vertical exposed faces was mapped using a high resolution (sub-millimetre) object scanner (Konica Minolta Vi9i). Patterns of loss are related to surface porosity/permeability measurements obtained using a hand-held gas permeameter. Introduction of this spatial dimension into damage assessment is seen as essential for understanding the initial conditions that allow surface loss to be triggered, and changes in surface characteristics as weathering proceeds which dictate subsequent decay in space and time. Preliminary observations suggest that scanning at this high resolution is particularly valuable in quantifying very subtle trends and distortions that are pre-cursors to material loss, including surface swelling and pore filling.
Resumo:
Laboratory salt decay simulations are a well established method to assess the relative durability of stone. There is still, however, very much scope to implement improved monitoring techniques to investigate the changes experienced by the materials during these experiments. Non-destructive techniques have acquired over recent decades a preferential status for monitoring change samples during salt decay tests, as they allow cumulative tests on each sample. The development of HD laser scanning permits detailed mapping of surface changes and, therefore, constitutes an effective technique to monitor non-destructively surface changes in tested samples as an alternative to other monitoring techniques such as traditional weight loss strategies that do not permit any degree of spatial differentiation that can be related, for example, to underlying stone properties.
Resumo:
UNLABELLED: Salt-inducible kinase 2 (SIK2) is a multifunctional kinase of the AMPK family that plays a role in CREB1-mediated gene transcription and was recently reported to have therapeutic potential in ovarian cancer. The expression of this kinase was investigated in prostate cancer clinical specimens. Interestingly, auto-antibodies against SIK2 were increased in the plasma of patients with aggressive disease. Examination of SIK2 in prostate cancer cells found that it functions both as a positive regulator of cell-cycle progression and a negative regulator of CREB1 activity. Knockdown of SIK2 inhibited cell growth, delayed cell-cycle progression, induced cell death, and enhanced CREB1 activity. Expression of a kinase-dead mutant of SIK2 also inhibited cell growth, induced cell death, and enhanced CREB1 activity. Treatment with a small-molecule SIK2 inhibitor (ARN-3236), currently in preclinical development, also led to enhanced CREB1 activity in a dose- and time-dependent manner. Because CREB1 is a transcription factor and proto-oncogene, it was posited that the effects of SIK2 on cell proliferation and viability might be mediated by changes in gene expression. To test this, gene expression array profiling was performed and while SIK2 knockdown or overexpression of the kinase-dead mutant affected established CREB1 target genes; the overlap with transcripts regulated by forskolin (FSK), the adenylate cyclase/CREB1 pathway activator, was incomplete.
IMPLICATIONS: This study demonstrates that targeting SIK2 genetically or therapeutically will have pleiotropic effects on cell-cycle progression and transcription factor activation, which should be accounted for when characterizing SIK2 inhibitors.
Resumo:
In prostate cancer (PC), the androgen receptor (AR) is a key transcription factor at all disease stages, including the advanced stage of castrate-resistant prostate cancer (CRPC). In the present study, we show that GABPα, an ETS factor that is up-regulated in PC, is an AR-interacting transcription factor. Expression of GABPα enables PC cell lines to acquire some of the molecular and cellular characteristics of CRPC tissues as well as more aggressive growth phenotypes. GABPα has a transcriptional role that dissects the overlapping cistromes of the two most common ETS gene fusions in PC: overlapping significantly with ETV1 but not with ERG target genes. GABPα bound predominantly to gene promoters, regulated the expression of one-third of AR target genes and modulated sensitivity to AR antagonists in hormone responsive and castrate resistant PC models. This study supports a critical role for GABPα in CRPC and reveals potential targets for therapeutic intervention.
Resumo:
Multiple breath wash-out (MBW) testing requires prior wash-in of inert tracer gas. Wash-in efficiency can be enhanced by a rebreathing tracer in a closed circuit. Previous attempts to deploy this did not account for the impact of CO2 accumulation on patients and were unsuccessful. We hypothesised that an effective rebreathe wash-in could be delivered and it would not alter wash-out parameters. Computer modelling was used to assess the impact of the rebreathe method on wash-in efficiency. Clinical testing of open and closed circuit wash-in–wash-out was performed in healthy controls and adult patients with cystic fibrosis (CF) using a circuit with an effective CO2 scrubber and a refined wash-in protocol. Wash-in efficiency was enhanced by rebreathing. There was no difference in mean lung clearance index between the two wash-in methods for controls (6.5 versus 6.4; p=0.2, n=12) or patients with CF (10.9 versus 10.8; p=0.2, n=19). Test time was reduced by rebreathe wash-in (156 versus 230 s for CF patients, p<0.001) and both methods were well tolerated. End wash-in CO2 was maintained below 2% in most cases. Rebreathe–wash-in is a promising development that, when correctly deployed, reduces wash-in time and facilitates portable MBW testing. For mild CF, wash-out outcomes are equivalent to an open circuit.
Resumo:
(abreviated) We aim to study the inner-wind structure (R<250 Rstar) of the well-known red supergiant VY CMa. We analyse high spatial resolution (~0".24x0".13) ALMA Science Verification (SV) data in band 7 in which four thermal emission lines of gaseous sodium chloride (NaCl) are present at high signal-to-noise ratio. For the first time, the NaCl emission in the inner wind region of VY CMa is spatially resolved. The ALMA observations reveal the contribution of up to four different spatial regions. The NaCl emission pattern is different compared to the dust continuum and TiO2 emission already analysed from the ALMA SV data. The emission can be reconciled with an axisymmetric geometry, where the lower density polar/rotation axis has a position angle of ~50 degrees measured from north to east. However, this picture can not capture the full morphological diversity, and discrete mass ejection events need to be invoked to explain localized higher-density regions. The velocity traced by the gaseous NaCl line profiles is significantly lower than the average wind terminal velocity, and much slower than some of the fastest mass ejections, signalling a wide range of characteristic speeds for the mass loss. Gaseous NaCl is detected far beyond the main dust condensation region. Realising the refractory nature of this metal halide, this hints at a chemical process preventing all NaCl from condensing onto dust grains. We show that in the case of the ratio of the surface binding temperature to the grain temperature being ~50, only some 10% of NaCl remains in gaseous form, while for lower values of this ratio thermal desorption efficiently evaporates NaCl. Photodesorption by stellar photons seems not to be a viable explanation for the detection of gaseous NaCl at 220 Rstar from the central star, and instead, we propose shock-induced sputtering driven by localized mass ejection events as alternative.