119 resultados para rats inbred Lewis
Resumo:
The anionic speciation of chlorostannate(II) ionic liquids, prepared by mixing 1-alkyl-3-methylimidazolium chloride and tin(II) chloride in various molar ratios, chi(SnCl2), was investigated in both solid and liquid states. The room temperature ionic liquids were investigated by Sn-119 NMR spectroscopy, X-ray photoelectron spectroscopy, and viscometry. Crystalline samples were studied using Raman spectroscopy, single-crystal X-ray crystallography, and differential scanning calorimetry. Both liquid and solid systems (crystallized from the melt) contained [SnCl3](-) in equilibrium with Cl- when chi(SnCl2) < 0.50, [SnCl3](-) in equilibrium with [Sn2Cl5](-) when chi(SnCl2) > 0.50, and only [SnCl3](-) when chi(SnCl2) = 0.50. Tin(II) chloride was found to precipitate when chi(SnCl2) > 0.63. No evidence was detected for the existence of [SnCl4](-) across the entire range of chi(SnCl2) although such anions have been reported in the literature for chlorostannate(II) organic salts crystallized from organic solvents. Furthermore, the Lewis acidity of the chlorostannate(II)-based systems, expressed by their Gutmann acceptor number, has been determined as a function of the composition, chi(SnCl2), to reveal Lewis acidity for chi(SnCl2) > 0.50 samples comparable to the analogous systems based on zinc(II). A change of the Lewis basicity of the anion was estimated using H-1 NMR spectroscopy, by comparison of the measured chemical shifts of the C-2 hydrogen in the imidazolium ring. Finally, compositions containing free chloride anions (chi(SnCl2) < 0.50) were found to oxidize slowly in air to form a chlorostannate(IV) ionic liquid containing the [SnCl6](2-) anion.
Resumo:
Vitamin B-6 deficiency causes mild elevation in plasma homocysteine, but the mechanism has not been clearly established. Serine is a substrate in one-carbon metabolism and in the transsulfuration pathway of homocysteine catabolism, and pyridoxal phosphate (PLP) plays a key role as coenzyme for serine hydroxymethyltransferase (SHMT) and enzymes of transsulfuration. In this study we used [H-2(3)]serine as a primary tracer to examine the remethylation pathway in adequately nourished and vitamin B-6-deficient rats pi and 0.1 mg pyridoxine (PN)/kg diet]. [H-2(3)]Leucine and [1-C-13]methionine were also used to examine turnover of protein and methionine pools, respectively, All tracers were injected intraperitoneally as a bolus dose, and then rats were killed (n = 4/time point) after 30, 60 and 120 min. Rats fed the low-PN diet had significantly lower growth and plasma and liver PLP concentrations, reduced liver SHMT activity, greater plasma and liver total homocysteine concentration, and reduced liver S-adenosylmethionine concentration. Hepatic and whole body protein turnover were reduced in vitamin B-6-deficient rats as evidenced by greater isotopic enrichment of [H-2(3)]leucine. Hepatic [H-2(2)]methionine production from [H-2(3)]serine via cytosolic SHMT and the remethylation pathway was reduced by 80.6% in vitamin B-6 deficiency. The deficiency did not significantly reduce hepatic cystathionine-beta-synthase activity, and in vivo hepatic transsulfuration flux shown by production of [H-2(3)]cysteine from the [H-2(3)]serine increased over twofold. In contrast, plasma appearance of [H-2(3)]cysteine was decreased by 89% in vitamin B-6 deficiency. The rate of hepatic homocysteine production shown by the ratio of [1-C-13]homocysteine/[1-C-13]methionine areas under enrichment vs. time curves was not affected by vitamin B-6 deficiency. Overall, these results indicate that vitamin B-6 deficiency substantially affects one-carbon metabolism by impairing both methyl group production for homocysteine remethylation and flux through whole-body transsulfuration.
Resumo:
Patients who cannot secrete ABO and Lewis blood group antigens into body fluids, an ability controlled by a single gene on chromosome 19, are known to be at increased risk of certain autoimmune diseases associated with human leucocyte antigen (HLA) markers. This study investigated the possibility of an association with coeliac disease using red cell Lewis (Le) blood group phenotype to infer secretor status. Among 73 patients with coeliac disease who had Le a or b antigen, 48% were non-secretors (Le a + b-) compared with 27% of 137 blood donors (p = 0.004: odds ratio 2.49, 95% confidence intervals 1.37 to 4.51) and 26% of 62 medical and nursing staff controls (p = 0.014: odds ratio 2.65, 95% confidence intervals 1.27 to 5.50). Clinical characteristics did not differ between secretors and non-secretors with coeliac disease. Thus, the non-secretor state is significantly associated with coeliac disease, suggesting that genes on chromosome 19 may directly or indirectly participate in conferring susceptibility.
Resumo:
A complementary computational and experimental study of the reactivity of Lewis acidic CrCl2, CuCl2 and FeCl2 catalysts towards glucose activation in dialkylimidazolium chloride ionic liquids is performed. The selective dehydration of glucose to 5-hydroxymethylfurfural (HMF) proceeds through the intermediate formation of fructose. Although chromium(II) and copper(II) chlorides are able to dehydrate fructose with high HMF selectivity, reasonable HMF yields from glucose are only obtained with CrCl2 as the catalyst. Glucose conversion by CuCl2 is not selective, while FeCl2 catalyst does not activate sugar molecules. These differences in reactivity are rationalized on the basis of in situ X-ray absorption spectroscopy measurements and the results of density functional theory calculations. The reactivity in glucose dehydration and HMF selectivity are determined by the behavior of the ionic liquid-mediated Lewis acid catalysts towards the initial activation of the sugar molecules. The formation of a coordination complex between the Lewis acidic Cr2+ center and glucose directs glucose transformation into fructose. For Cu2+ the direct coordination of sugar to the copper(II) chloride complex is unfavorable. Glucose deprotonation by a mobile Cl- ligand in the CuCl42- complex initiates the nonselective conversion. In the course of the reaction the Cu2+ ions are reduced to Cu+. Both paths are prohibited for the FeCl2 catalyst.
Resumo:
The objective of this study was to investigate the inhibitory effect of tea components, tea polyphenols and tea pigments, on precancerous liver lesions in rats. A rat liver precancerous lesion model was established by multiple low-dosage N-nitrosodiethylamine (NDEA) injections, followed by intraperitoneal CCl4 injection and partial hepatectomy (PH). Tea pigments (0.1%) or tea polyphenols (0.1%) were given to Wistar rats in drinking water during the eight weeks of the experiment. The number and area of glutathione S-transferase Pi-positive foci in the rat liver were used as biomarkers of precancerous liver lesions. Western and Northern blot techniques were used to detect rat liver GST-Pi expression at the protein and mRNA levels. At the end of the experiment tea polyphenols and tea pigments significantly decreased the number and area of GST-Pi-positive foci that were overexpressed in the NDEA-CCl4-PH-treated rats compared with the positive control group. The results also showed that GST-Pi mRNA and protein expression increased significantly in the NDEA-CCl4-PH-treated group, which is consistent with the changing of GST-Pi-positive foci. Tea pigments and tea polyphenols had an inhibitory effect on the overexpression of GST-Pi mRNA and protein in NDEA-CCl4-PH-treated rats. These results suggest that tea pigments and tea polyphenols are effective in preventing the occurrence and progression of precancerous liver lesions in rats.
Resumo:
The question of whether ethanol has intrinsically rewarding properties, or whether, as a discriminative stimulus, it can become a conditioned reinforcer as a function of context association was examined. Paired rats consumed more of an ethanol solution than isolated rats over a 15 day 'conditioning' phase and their ingestion rate was increased significantly over the 15 day period. Furthermore, animals exposed to the solution with a conspecific companion during this conditioning phase subsequently showed a marked preference for ethanol over water throughout a 10 day test phase (when all animals were alone) compared to those with prior experience of the solution in isolation. Both groups consumed significantly more ethanol than the controls (with no prior ethanol experience at all) during this test phase. The results suggest that the total context of initial exposure to ethanol mediate its subsequent reinforcing properties, with the prior pleasurable context of being with a conspecific companion generalizing to the ethanol stimulus for the paired group.
Resumo:
Voltage-gated sodium channels (VGSCs) play a crucial role in epilepsy. The expressions of different VGSCs subtypes are varied in diverse animal models of epilepsy that may reflect their multiple phenotypes or the complexity of the mechanisms of epilepsy. In a previous study, we reported that NaV1.1 and NaV1.3 were up-regulated in the hippocampus of the spontaneously epileptic rat (SER). In this study, we further analyzed both the expression and distribution of the typical VGSC subtypes NaV1.1, NaV1.2, NaV1.3 and NaV1.6 in the hippocampus and in the cortex of the temporal lobe of two genetic epileptic animal models: the SER and the tremor rat (TRM). The expressions of calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMKII) were also analyzed with the purpose of assessing the effect of the CaM/CaMKII pathway in these two models of epilepsy. Increased expression of the four VGSC subtypes and CaM, accompanied by a decrease in CaMKII was observed in the hippocampus of both the SERs and the TRM rats. However, the changes observed in the expression of VGSC subtypes and CaM were decreased with an elevated CaMKII in the cortex of their temporal lobes. Double-labeled immunofluorescence data suggested that in SERs and TRM rats, the four subtypes of the VGSC proteins were present throughout the CA1, CA3 and dentate gyrus regions of the hippocampus and temporal lobe cortex and these were co-localized in neurons with CaM. These data represent the first evidence of abnormal changes in expression of four VGSC subtypes (NaV1.1, NaV1.2, NaV1.3 and NaV1.6) and CaM/CaMKII in the hippocampus and temporal lobe cortex of SERs and TRM rats. These changes may be involved in the generation of epileptiform activity and underlie the observed seizure phenotype in these rat models of genetic epilepsy.
Resumo:
Purpose: To evaluate the immune cell subsets in conjunctival mucosa-associated-lymphoid-tissue (C-MALT) following challenge with antigen. Methods: Ten adult female Lewis rats were studied. Five rats received one drop (5 µL) of retinal S-antigen (500 µg/mL in phosphate buffered saline, PBS) instilled into the lower fornix twice daily for 10 consecutive days. Five rats received PBS only and served as controls for the experiment. Two days after the last instillation the animals were sacrificed and the orbital contents prepared for immunohistological staining. A panel of monoclonal antibodies was used: CD5, CD4, CD8, CD25, and CD45RA. The number of positive cells were counted in sections of epibulbar, forniceal, and tarsal conjunctiva. Results: There was a significant increase in the number of CD8 T lymphocytes in the conjunctiva of animals receiving retinal S-antigen when compared to control animals. Conclusion: Conjunctival instillation of retinal S-antigen causes an immune response in the C-MALT with a significant increase in the CD8 T lymphocyte subset in this tissue. This response may be involved in the induction of tolerance to the encountered antigen.
Resumo:
Dioxin contamination of the food chain typically occurs when cocktails of combustion residues or polychlorinated biphenyl (PCB) containing oils become incorporated into animal feed. These highly toxic compounds are bioaccumulative with small amounts posing a major health risk. The ability to identify animal exposure to these compounds prior to their entry into the food chain may be an invaluable tool to safeguard public health. Dioxin-like compounds act by a common mode of action and this suggests that markers or patterns of response may facilitate identification of exposed animals. However, secondary co-contaminating compounds present in typical dioxin sources may affect responses to compounds. This study has investigated for the first time the potential of a metabolomics platform to distinguish between animals exposed to different sources of dioxin contamination through their diet. Sprague-Dawley rats were given feed containing dioxin-like toxins from hospital incinerator soot, a common PCB oil standard and pure 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (normalized at 0.1 µg/kg TEQ) and acquired plasma was subsequently biochemically profiled using ultra high performance liquid chromatography (UPLC) quadropole time-of-flight-mass spectrometry (QTof-MS). An OPLS-DA model was generated from acquired metabolite fingerprints and validated which allowed classification of plasma from individual animals into the four dietary exposure study groups with a level of accuracy of 97-100%. A set of 24 ions of importance to the prediction model, and which had levels significantly altered between feeding groups, were positively identified as deriving from eight identifiable metabolites including lysophosphatidylcholine (16:0) and tyrosine. This study demonstrates the enormous potential of metabolomic-based profiling to provide a powerful and reliable tool for the detection of dioxin exposure in food-producing animals.
Resumo:
The host genotype has been proposed to contribute to individually composed bacterial communities in the gut. To provide deeper insight into interactions between gut bacteria and host, we associated germ-free C3H and C57BL/10 mice with intestinal bacteria from a C57BL/10 donor mouse. Analysis of microbiota similarity between the animals with denaturing gradient gel electrophoresis revealed the development of a mouse strain-specific microbiota. Microarray-based gene expression analysis in the colonic mucosa identified 202 genes whose expression differed significantly by a factor of more than 2. Application of bioinformatics tools demonstrated that functional terms including signaling/secretion, lipid degradation/catabolism, guanine nucleotide/guanylate binding and immune response were significantly enriched in differentially expressed genes. We had a closer look at the 56 genes with expression differences of more than 4 and observed a higher expression in C57BL/10 mice of the genes coding for Tlr1 and Ang4 which are involved in the recognition and response to gut bacteria. A higher expression of Pla2g2a was detected in C3H mice. In addition, a number of interferon-inducible genes were higher expressed in C3H than in C57BL/10 mice including Gbp1, Mal, Oasl2, Ifi202b, Rtp4, Ly6g6c, Ifi27l2a, Usp18, Ifit1, Ifi44, and Ly6g indicating that interferons may play an essential role in microbiota regulation. However, genes coding for interferons, their receptors, factors involved in interferon expression regulation or signaling pathways were not differentially expressed between the two mouse strains. Taken together, our study confirms that the host genotype is involved in the establishment of host-specific bacterial communities in the gut. Based on expression differences after colonization with the same bacterial inoculum, we propose that Pla2g2a and interferon-dependent genes may contribute to this phenomenon.
Resumo:
Insulin-like growth factor binding protein (IGFBP)-3 modulates vascular development by regulating endothelial progenitor cell (EPC) behavior, specifically stimulating EPC cell migration. This study was undertaken to investigate the mechanism of IGFBP-3 effects on EPC function and how IGFBP-3 mediates cytoprotection following vascular injury.
Resumo:
Serotonin (5-HT) receptor agonists have been reported to produce mydriasis in mice, and miosis in rabbits and humans. However, the underlying mechanisms for this action are unclear. This study was undertaken in an attempt to explore the mechanism by which 5-HT receptors are involved in the modulation of pupillary size in pentobarbital-anesthetized rats. Intravenous administration of the 5-HT receptor agonist, (2R)-(+)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.003-3 mg/kg), elicited dose-dependent pupillary dilation, which was not affected by section of the preganglionic cervical sympathetic nerve. 8-OH-DPAT-elicited mydriatic responses were attenuated by the selective 5-HT receptor antagonist, N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-2- pyridinylcyclohexanecarboxamide maleate (WAY 100635; 0.3-1 mg/kg, i.v.), as well as by the selective a -adrenoceptor antagonist, (8aR,12aS,13aS)-5,8,8a,9,10,11,12,12a,13,13a-dechydro-3-methoxy-12- (ethylsulfonyl)-6H-isoquino[2,1-g][1,6]naphthyridine hydrochloride (RS 79948; 0.3 mg/kg, i.v.), but not by the selective a -adrenoceptor antagonist, prazosin (0.3 mg/kg, i.v.). Mydriatic responses elicited by the a -adrenoceptor agonist, guanabenz (0.003-0.3 mg/kg, i.v.), were not antagonized by WAY 100635 (0.3-1 mg/kg, i.v.). To determine whether central nervous system (CNS) 5-HT receptors, like a -adrenoceptors, are involved in reflex mydriasis, voltage response curves of pupillary dilation were constructed by stimulation of the sciatic nerve in anesthetized rats. WAY 100635 (1 mg/kg, i.v.) did not antagonize the evoked reflex mydriasis, which, however, was blocked by RS 79948 (0.3 mg/kg, i.v.). Taken together, these results suggest that 8-OH-DPAT produces pupillary dilation in anesthetized rats by stimulating CNS 5-HT receptors, which in turn trigger the release of norepinephrine, presumably from the locus coeruleus. The latter reduces parasympathetic neuronal tone to the iris sphincter muscle by stimulation of postsynaptic a - adrenoceptors within the Edinger-Westphal nucleus. Unlike a - adrenoceptors, 5-HT receptors in the CNS do not mediate reflex mydriasis evoked by sciatic nerve stimulation. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Previously, we reported that the alpha(1A)-adrenoceptor, but not the alpha(1D)-adrenoceptor, mediates pupillary dilation elicited by sympathetic nerve stimulation in rats. This study was undertaken to further characterize the alpha-adrenoceptor subtypes mediating pupillary dilation in response to both neural and agonist activation. Pupillary dilator response curves were generated by intravenous injection of norepinephrine in pentobarbital-anesthetized rats. Involvement of alpha(1)-adrenoceptors was established as mydriatic responses were inhibited by systemic administration of nonselective alpha-adrenoceptor antagonists, phentolamine (0.3-3 mg/kg) and phenoxybenzamine (0.03-0.3 mg/kg), as well as by the selective alpha(1)-adrenoceptor antagonist, prazosin (0.3 mg/kg). The alpha(2)-adrenoceptor antagonist, rauwolscine (0.5 mg/kg), was without antagonistic effects. alpha(1A)-Adrenoceptor selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), the alpha(1B)-adrenoceptor selective antagonist, 4-amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6,7-dimethoxyquinazoline (L-765314; 0.3-1 mg/kg), as well as the alpha(1D)-adrenoceptor selective antagonist, 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1 mg/kg), were used to delineate the adrenoceptor subtypes involved. Mydriatic responses to norepinephrine were significantly antagonized by intravenous administration of both WB-4101 and 5-methylurapidil, but neither by L-765314 nor by BMY-7378. L-765314 (0.3-3 mg/kg, i.v.) was also ineffective in inhibiting the mydriasis evoked by cervical sympathetic nerve stimulation. These results suggest that alpha(1B)-adrenoceptors do not mediate sympathetic mydriasis in rats, and that the alpha(1A)-adrenoceptor is the exclusive subtype mediating mydriatic responses in this species.