89 resultados para plasma nanoscience
Resumo:
The atmospheric pressure plasma jet (APPJ) is a homogeneous non-equilibrium discharge at ambient pressure. It operates with a noble base gas and a percentage-volume admixture of a molecular gas. Applications of the discharge are mainly based on reactive species in the effluent. The effluent region of a discharge operated in helium with an oxygen admixture has been investigated. The optical emission from atomic oxygen decreases with distance from the discharge but can still be observed several centimetres in the effluent. Ground state atomic oxygen, measured using absolutely calibrated two-photon laser induced fluorescence spectroscopy, shows a similar behaviour. Detailed understanding of energy transport mechanisms requires investigations of the discharge volume and the effluent region. An atmospheric pressure plasma jet has been designed providing excellent diagnostics access and a simple geometry ideally suited for modelling and simulation. Laser spectroscopy and optical emission spectroscopy can be applied in the discharge volume and the effluent region.
Resumo:
Gas temperature is of major importance in plasma based surface treatment, since the surface processes are strongly temperature sensitive. The spatial distribution of reactive species responsible for surface modification is also influenced by the gas temperature. Industrial applications of RF plasma reactors require a high degree of homogeneity of the plasma in contact with the substrate. Reliable measurements of spatially resolved gas temperatures are, therefore, of great importance. The gas temperature can be obtained, e.g. by optical emission spectroscopy (OES). Common methods of OES to obtain gas temperatures from analysis of rotational distributions in excited states do not include the population dynamics influenced by cascading processes from higher electronic states. A model was developed to evaluate this effect on the apparent rotational temperature that is observed. Phase resolved OES confirmed the validity of this model. It was found that cascading leads to higher apparent temperatures, but the deviation (~25 K) is relatively small and can be ignored in most cases. This analysis is applied to investigate axially and radially resolved temperature profiles in an inductively coupled hydrogen RF discharge.
Resumo:
A novel acousto-optic spectrometer (IfU Diagnostic Systems GmbH) for 2-dimensional (2D) optical emission spectroscopy with high spectral resolution has been developed. The spectrometer is based on acousto-optic tuneable filter technology with fast random wavelength access. Measurements for characterisation of the imaging quality, the spatial resolution, and the spectral resolution are presented. The applicability for 2D-space and phase resolved optical emission spectroscopy (2D-PROES) is shown. 2D-PROES has been applied to an inductively coupled plasma with radio frequency excitation at 13.56 MHz.
Characterization of stationary and pulsed inductively coupled RF discharges for plasma sterilization
Resumo:
Sterilization of bio-medical materials using radio frequency (RF) excited inductively coupled plasmas (ICPs) has been investigated. A double ICP has been developed and studied for homogenous treatment of three-dimensional objects. Sterilization is achieved through a combination of ultraviolet light, ion bombardment and radical treatment. For temperature sensitive materials, the process temperature is a crucial parameter. Pulsing of the plasma reduces the time average heat strain and also provides additional control of the various sterilization mechanisms. Certain aspects of pulsed plasmas are, however, not yet fully understood. Phase resolved optical emission spectroscopy and time resolved ion energy analysis illustrate that a pulsed ICP ignites capacitively before reaching a stable inductive mode. Time resolved investigations of the post-discharge, after switching off the RF power, show that the plasma boundary sheath in front of a substrate does not fully collapse for the case of hydrogen discharges. This is explained by electron heating through super-elastic collisions with vibrationally excited hydrogen molecules.
Resumo:
Three plasma diagnostic methods, tunable infrared diode laser absorption spectroscopy, optical emission spectroscopy and microwave interferometry have been used to monitor concentrations of transient and stable molecules, CH3, CH4, C2H2, C2H6, and of electrons in capacitively coupled CH4-H-2-Ar radiofrequency (RF) plasmas (f(RF) = 13.56 MHz, p = 100 Pa, phi (total)= 66 sccm) for various discharge power values (P = 10-100 W) and gas mixtures. The degree of dissociation of the methane precursor varied between 3% and 60%. The methyl radical concentration was found to be in the order of 10(12) molecules cm(-3) and the electron concentration in the order of loll cm(-3). The methyl radical concentration and the concentrations of the stable C-2 hydrocarbons, C2H2 and C2H6, produced in the plasma, increased with discharge power. The fragmentation rates of the methane precursor and conversion rates to the measured C-2 hydrocarbons were estimated in dependence on discharge power. Radial distributions of the electron and methyl radical concentrations, and of the gas temperature were measured for the first time simultaneously in the plasma region between the discharge electrodes. The measurements allow us to draw qualitative conclusions on the main chemical processes and the plasma chemical reaction paths.
Resumo:
Experimental evidence of plasma jets ejected from the rear side of thin solid targets irradiated by ultraintense (> 10(19) W cm(-2)) laser pulses is presented. The jets, detected by transverse interferometric measurements with high spatial and temporal resolutions, show collimated expansion lasting for several hundreds of picoseconds and have substantially steep density gradients at their periphery. The role played by radiation pressure of the laser in the jet formation process is highlighted analytically and by extensive two-dimensional particle-in-cell simulations.
Resumo:
The propagation in a rarefied plasma (n(e)less than or similar to 10(15) cm(-3)) of collisionless shock waves and ion-acoustic solitons, excited following the interaction of a long (tau(L)similar to 470 ps) and intense (I similar to 10(15) W cm(-2)) laser pulse with solid targets, has been investigated via proton probing techniques. The shocks' structures and related electric field distributions were reconstructed with high spatial and temporal resolution. The experimental results were interpreted within the framework of the nonlinear wave description based on the Korteweg-de Vries-Burgers equation.