159 resultados para multivariate classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been 25 years since the publication of a comprehensive review of the full spectrum of salesperformance drivers. This study takes stock of the contemporary field and synthesizes empirical evidence from the period 1982–2008. The authors revise the classification scheme for sales performance determinants devised by Walker et al. (1977) and estimate both the predictive validity of its sub-categories and the impact of a range of moderators on determinant-sales performance relationships. Based on multivariate causal model analysis, the results make two major observations: (1) Five sub-categories demonstrate significant relationships with sales performance: selling-related knowledge (ß=.28), degree of adaptiveness (ß=.27), role ambiguity (ß=-.25), cognitive aptitude (ß=.23) and work engagement (ß=.23). (2) These sub-categories are moderated by measurement method, research context, and salestype variables. The authors identify managerial implications of the results and offer suggestions for further research, including the conjecture that as the world is moving toward a knowledge-intensive economy, salespeople could be functioning as knowledge-brokers. The results seem to back this supposition and indicate how it might inspire future research in the field of personal selling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Discrete Conditional Phase-type (DC-Ph) models consist of a process component (survival distribution) preceded by a set of related conditional discrete variables. This paper introduces a DC-Ph model where the conditional component is a classification tree. The approach is utilised for modelling health service capacities by better predicting service times, as captured by Coxian Phase-type distributions, interfaced with results from a classification tree algorithm. To illustrate the approach, a case-study within the healthcare delivery domain is given, namely that of maternity services. The classification analysis is shown to give good predictors for complications during childbirth. Based on the classification tree predictions, the duration of childbirth on the labour ward is then modelled as either a two or three-phase Coxian distribution. The resulting DC-Ph model is used to calculate the number of patients and associated bed occupancies, patient turnover, and to model the consequences of changes to risk status.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical and pathological heterogeneity of breast cancer hinders selection of appropriate treatment for individual cases. Molecular profiling at gene or protein levels may elucidate the biological variance of tumors and provide a new classification system that correlates better with biological, clinical and prognostic parameters. We studied the immunohistochemical profile of a panel of seven important biomarkers using tumor tissue arrays. The tumor samples were then classified with a monothetic (binary variables) clustering algorithm. Two distinct groups of tumors are characterized by the estrogen receptor (ER) status and tumor grade (p = 0.0026). Four biomarkers, c-erbB2, Cox-2, p53 and VEGF, were significantly overexpressed in tumors with the ER-negative (ER-) phenotype. Eight subsets of tumors were further identified according to the expression status of VEGF, c-erbB2 and p53. The malignant potential of the ER-/VEGF+ subgroup was associated with the strong correlations of Cox-2 and c-erb132 with VEGF. Our results indicate that this molecular classification system, based on the statistical analysis of immunohistochemical profiling, is a useful approach for tumor grouping. Some of these subgroups have a relative genetic homogeneity that may allow further study of specific genetically-controlled metabolic pathways. This approach may hold great promise in rationalizing the application of different therapeutic strategies for different subgroups of breast tumors. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: