230 resultados para lung CT
Resumo:
Purpose To examine the effect of weekly completion of a patient-held quality-of-life (QOL) diary in routine oncology practice for palliative care patients.
Resumo:
Abstract BACKGROUND: Genetic processes underlying fetal lung development and maturation are incompletely understood. Better knowledge of these processes would provide insights into the causes of lung malformations and prevention of respiratory distress syndrome and the potential adverse effects of glucocorticoids. Hox genes are involved in the lung branching morphogenesis and maturation of respiratory epithelium, but their expression pattern remains to be defined. OBJECTIVES: We hypothesized that genes involved in lung branching would be downregulated during early development, whereas those involved in maturation would be unchanged or upregulated. METHODS: TaqMan real-time primers and probes were designed for all 39 murine Hox genes, and the murine SP-B gene and transcription profiles of these genes were obtained from whole lungs isolated at e14.5, e16.5, e18.5, e19.5 and postnatal days 1 and 20. RESULTS: Hox genes in clusters A and B, specifically those between paralog groups 3 and 7, were the most represented, with Hoxa4 and Hoxa5 being the most highly transcribed. A wave of reduced transcription in 16 Hox genes, coincident with increased SP-B transcription, was observed with advancing gestation. Consistently high transcription of Hoxa5 from e14.5 to postnatal day 20 may indicate that sustained transcription is required for normal lung maturation. When e15.5 lungs were cultured with dexamethasone, Hoxb6, Hoxb7 and Hoxb8 levels were significantly upregulated, creating the potential for modulation of diverse downstream target genes. CONCLUSIONS: Improved understanding of the genetic processes underlying lung development afforded by our Q-PCR platform may allow development of more specific methods for inducing fetal lung maturation.
Resumo:
Lung cancer is the most common cause of cancer death. The conventional method of confirming the diagnosis is bronchoscopy, inspecting the airways of the patient with a fiber optic endoscope. A number of studies have shown that Raman spectroscopy can diagnose lung cancer in vitro. In this study, Raman spectra were obtained from ex vivo normal and malignant lung tissue using a minifiber optic Raman probe suitable for insertion into the working channel of a bronchoscope. Shifted subtracted Raman spectroscopy was used to reduce the fluorescence from the lung tissue. Using principal component analysis with a leave-one-out analysis, the tissues were classified accurately. This novel technique has the potential to obtain Raman spectra from tumors from patients with lung cancer in vivo.
Resumo:
Lung T lymphocytes are important in pulmonary immunity and inflammation. it has been difficult to study these cells due to contamination with other cell types, mainly alveolar macrophages. We have developed a novel method for isolating lung T cells from lung resection tissue, using a combination of approaches. Firstly the lung tissue was finely chopped and filtered through a nylon mesh. Lymphocytic cells were enriched by Percoll density centrifugation and the T cells purified using human CD3 microbeads, resulting in 90.5% +/- 1.9% (n = 11) pure lymphocytes. The T cell yield from the crude cell preparation was 10.8 +/- 2.1% and viability, calculated using propidium iodide (PI) staining and trypan blue, was typically over 95%. The purification process did not affect expression of CD69 or CD103, nor was there a difference in the proportion of CD4 and CD8 cells between the starting population and the purified cells. Microarray analysis and real time RT-PCR revealed upregulation of GAPDH and CXCR6 of the lung T cells as compared to blood-derived T cells. This technique highly enriches lung T cells to allow detailed investigation of the biology of these cells. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The introduction of functional data into the radiotherapy treatment planning process is currently the focus of significant commercial, technical, scientific and clinical development. The potential of such data from positron emission tomography (PET) was recognized at an early stage and was integrated into the radiotherapy treatment planning process through the use of image fusion software. The combination of PET and CT in a single system (PET/CT) to form an inherently fused anatomical and functional dataset has provided an imaging modality which could be used as the prime tool in the delineation of tumour volumes and the preparation of patient treatment plans, especially when integrated with virtual simulation. PET imaging typically using F-Fluorodeoxyglucose (F-FDG) can provide data on metabolically active tumour volumes. These functional data have the potential to modify treatment volumes and to guide treatment delivery to cells with particular metabolic characteristics. This paper reviews the current status of the integration of PET and PET/CT data into the radiotherapy treatment process. Consideration is given to the requirements of PET/CT data acquisition with reference to patient positioning aids and the limitations imposed by the PET/CT system. It also reviews the approaches being taken to the definition of functional/ tumour volumes and the mechanisms available to measure and include physiological motion into the imaging process. The use of PET data must be based upon a clear understanding of the interpretation and limitations of the functional signal. Protocols for the implementation of this development remain to be defined, and outcomes data based upon clinical trials are still awaited. © 2006 The British Institute of Radiology.
Resumo:
Objectives: Acute lung injury and the acute respiratory distress syndrome are characterized by noncardiogenic pulmonary edema, which can be assessed by measurement of extravascular lung water. Traditionally, extravascular lung water has been indexed to actual body weight (mL/kg). Because lung size is dependent on height rather than weight, we hypothesized indexing to predicted body weight may be a better predictor of mortality in acute lung injury/acute respiratory distress syndrome.
Resumo:
Secretory leucoprotease inhibitor (SLPI) is a neutrophil serine protease inhibitor constitutively expressed at many mucosal surfaces, including that of the lung. Originally identified as a serine protease inhibitor, it is now evident that SLPI also has antimicrobial and anti-inflammatory functions, and therefore plays an important role in host defense. Previous work has shown that some host defense proteins such as SLPI and elafin are susceptible to proteolytic degradation. Consequently, we investigated the status of SLPI in the cystic fibrosis (CF) lung. A major factor that contributes to the high mortality rate among CF patients is Pseudomonas aeruginosa infection. In this study, we report that P. aeruginosa-positive CF bronchoalveolar lavage fluid, which contains lower SLPI levels and higher neutrophil elastase (NE) activity compared with P. aeruginosa-negative samples, was particularly effective at cleaving recombinant human SLPI. Additionally, we found that only NE inhibitors were able to prevent SLPI cleavage, thereby implicating NE in this process. NE in excess was found to cleave recombinant SLPI at two novel sites in the NH(2)-terminal region and abrogate its ability to bind LPS and NF-kappaB consensus binding sites but not its ability to inhibit activity of the serine protease cathepsin G. In conclusion, this study provides evidence that SLPI is cleaved and inactivated by NE present in P. aeruginosa-positive CF lung secretions and that P. aeruginosa infection contributes to inactivation of the host defense screen in the CF lung.
Resumo:
Matrix metalloproteinases (MMPs) degrade all of the extracellular matrix components of the intersititium and may play a role in abnormal alveolar permeability, which is a feature of idiopathic pulmonary fibrosis (IPF). The aims of the present study were to evaluate MMP protein levels in patients with IPF and determine any relationship to treatment and markers of permeability.