96 resultados para computer vision, facial expression recognition, swig, red5, actionscript, ruby on rails, html5


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smart Spaces, Ambient Intelligence, and Ambient Assisted Living are environmental paradigms that strongly depend on their capability to recognize human actions. While most solutions rest on sensor value interpretations and video analysis applications, few have realized the importance of incorporating common-sense capabilities to support the recognition process. Unfortunately, human action recognition cannot be successfully accomplished by only analyzing body postures. On the contrary, this task should be supported by profound knowledge of human agency nature and its tight connection to the reasons and motivations that explain it. The combination of this knowledge and the knowledge about how the world works is essential for recognizing and understanding human actions without committing common-senseless mistakes. This work demonstrates the impact that episodic reasoning has in improving the accuracy of a computer vision system for human action recognition. This work also presents formalization, implementation, and evaluation details of the knowledge model that supports the episodic reasoning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background This study aims to examine the relationship between how individuals with intellectual disabilities report their own levels of anger, and the ability of those individuals to recognize emotions. It was hypothesized that increased expression of anger would be linked to lower ability to recognize facial emotional expressions and increased tendency to interpret facial expressions in a hostile or negative manner. It was also hypothesized increased levels of anger may lead to the altered perception of a particular emotion.

Method A cross-sectional survey design was used. Thirty participants completed a test of facial emotion recognition (FER), and a self-report anger inventory (Benson & Ivins 1992) as part of a structured interview.

Results Individuals with higher self-reported anger did not show significantly reduced performance in FER, or interpret facial expressions in a more hostile manner compared with individuals with less self-reported anger. However, they were less accurate in recognizing neutral facial emotions.

Conclusions It is tentatively suggested that individuals with high levels of anger may be likely to perceive emotional content in a neutral facial expression because of their high levels of emotional arousal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age-related changes in the facial expression of pain during the first 18 months of life have important implications for our understanding of pain and pain assessment. We examined facial reactions video recorded during routine immunization injections in 75 infants stratified into 2-, 4-, 6-, 12-, and 18-month age groups. Two facial coding systems differing in the amount of detail extracted were applied to the records. In addition, parents completed a brief questionnaire that assessed child temperament and provided background information. Parents' efforts to soothe the children also were described. While there were consistencies in facial displays over the age groups, there also were differences on both measures of facial activity, indicating systematic variation in the nature and severity of distress. The least pain was expressed by the 4-month age group. Temperament was not related to the degree of pain expressed. Systematic variations in parental soothing behaviour indicated accommodation to the age of the child. Reasons for the differing patterns of facial activity are examined, with attention paid to the development of inhibitory mechanisms and the role of negative emotions such as anger and anxiety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pain expression in neonates instigated by heel-lance for blood sampling purposes was systematically described using measures of facial expression and cry and compared across sleep/waking states and sex. From gate-control theory it was hypothesized that pain behavior would vary with the ongoing functional state of the infant, rather than solely reflecting tissue insult. Awake-alert but inactive infants responded with the most facial activity, consistent with current views that infants in this state are most receptive to environmental stimulation. Infants in quiet sleep showed the least facial reaction and the longest latency to cry. Fundamental frequency of cry was not related to sleep/waking state. This suggested that findings from the cry literature on qualities of pain cry as a reflection of nervous system 'stress', in unwell newborns, do not generalize directly to healthy infants as a function of state. Sex differences were apparent in speed of response, with boys showing shorter time to cry and to display facial action following heel-lance. The findings of facial action variation across sleep/waking state were interpreted as indicating that the biological and behavioral context of pain events affects behavioral expression, even at the earliest time developmentally, before the opportunity for learned response patterns occurs. Issues raised by the study include the importance of using measurement techniques which are independent of preconceived categories of affective response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human action recognition is an important problem in computer vision, which has been applied to many applications. However, how to learn an accurate and discriminative representation of videos based on the features extracted from videos still remains to be a challenging problem. In this paper, we propose a novel method named low-rank representation based action recognition to recognize human actions. Given a dictionary, low-rank representation aims at finding the lowestrank representation of all data, which can capture the global data structures. According to its characteristics, low-rank representation is robust against noises. Experimental results demonstrate the effectiveness of the proposed approach on several publicly available datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ear recognition, as a biometric, has several advantages. In particular, ears can be measured remotely and are also relatively static in size and structure for each individual. Unfortunately, at present, good recognition rates require controlled conditions. For commercial use, these systems need to be much more robust. In particular, ears have to be recognized from different angles ( poses), under different lighting conditions, and with different cameras. It must also be possible to distinguish ears from background clutter and identify them when partly occluded by hair, hats, or other objects. The purpose of this paper is to suggest how progress toward such robustness might be achieved through a technique that improves ear registration. The approach focuses on 2-D images, treating the ear as a planar surface that is registered to a gallery using a homography transform calculated from scale-invariant feature-transform feature matches. The feature matches reduce the gallery size and enable a precise ranking using a simple 2-D distance algorithm. Analysis on a range of data sets demonstrates the technique to be robust to background clutter, viewing angles up to +/- 13 degrees, and up to 18% occlusion. In addition, recognition remains accurate with masked ear images as small as 20 x 35 pixels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the importance of laughter in social interactions it remains little studied in affective computing. Respiratory, auditory, and facial laughter signals have been investigated but laughter-related body movements have received almost no attention. The aim of this study is twofold: first an investigation into observers' perception of laughter states (hilarious, social, awkward, fake, and non-laughter) based on body movements alone, through their categorization of avatars animated with natural and acted motion capture data. Significant differences in torso and limb movements were found between animations perceived as containing laughter and those perceived as nonlaughter. Hilarious laughter also differed from social laughter in the amount of bending of the spine, the amount of shoulder rotation and the amount of hand movement. The body movement features indicative of laughter differed between sitting and standing avatar postures. Based on the positive findings in this perceptual study, the second aim is to investigate the possibility of automatically predicting the distributions of observer's ratings for the laughter states. The findings show that the automated laughter recognition rates approach human rating levels, with the Random Forest method yielding the best performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an event recognition framework, based on Dempster-Shafer theory, that combines evidence of events from low-level computer vision analytics. The proposed method employing evidential network modelling of composite events, is able to represent uncertainty of event output from low level video analysis and infer high level events with semantic meaning along with degrees of belief. The method has been evaluated on videos taken of subjects entering and leaving a seated area. This has relevance to a number of transport scenarios, such as onboard buses and trains, and also in train stations and airports. Recognition results of 78% and 100% for four composite events are encouraging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for rational behaviour recognition that combines vision-based pose estimation with knowledge modeling and reasoning. The proposed method consists of two stages. First, RGB-D images are used in the estimation of the body postures. Then, estimated actions are evaluated to verify that they make sense. This method requires rational behaviour to be exhibited. To comply with this requirement, this work proposes a rational RGB-D dataset with two types of sequences, some for training and some for testing. Preliminary results show the addition of knowledge modeling and reasoning leads to a significant increase of recognition accuracy when compared to a system based only on computer vision.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.