98 resultados para arterial stiffness
Resumo:
The defensive skin secretions of amphibians are a rich resource for the discovery of novel, bioactive peptides. Here we report the identification of a novel vascular smooth muscle-relaxing peptide, named vasorelaxin, from the skin secretion of the Chinese piebald odorous frog, Odorrana schmackeri. Vasorelaxin consists of 20 amino acid residues, SRVVKCSGFRPGSPDSREFC, with a disulfide-bridge between Cys-6 and Cys-20. The structure of its biosynthetic precursor was deduced from cloned skin cDNA and consists of 67 amino acid residues encoding a single copy of vasorelaxin (vasorelaxin, accession number: HE860494). Synthetic vasorelaxin caused a profound relaxation of rat arterial smooth muscle with an EC50 of 6.76 nM.
Resumo:
Embryonic stem cells possess the ability to differentiate into endothelium. The ability to produce large volumes of endothelium from embryonic stem cells could provide a potential therapeutic modality for vascular injury. We describe an approach that selects endothelial cells using magnetic beads that may be used therapeutically to treat arterial injury.
Resumo:
A finite element model of a single cell was created and used to investigate the effects of ageing on biophysical stimuli generated within a cell. Major cellular components were incorporated in the model: the membrane, cytoplasm, nucleus, microtubules, actin filaments, intermediate filaments, nuclear lamina, and chromatin. The model used multiple sets of tensegrity structures. Viscoelastic properties were assigned to the continuum components. To corroborate the model, a simulation of Atomic Force Microscopy (AFM) indentation was performed and results showed a force/indentation simulation with the range of experimental results.
Ageing was simulated by both increasing membrane stiffness (thereby modelling membrane peroxidation with age) and decreasing density of cytoskeletal elements (thereby modelling reduced actin density with age). Comparing normal and aged cells under indentation predicts that aged cells have a lower membrane area subjected to high strain compared to young cells, but the difference, surprisingly, is very small and would not be measurable experimentally. Ageing is predicted to have more significant effect on strain deep in the nucleus. These results show that computation of biophysical stimuli within cells are achievable with single-cell computational models whose force/displacement behaviour is within experimentally observed ranges. the models suggest only small, though possibly physiologically-significant, differences in internal biophysical stimuli between normal and aged cells.
Resumo:
To determine in Type 1 diabetes patients if levels of pigment epithelium-derived factor (PEDF), an anti-angiogenic, anti-inflammatory and antioxidant factor, are increased in individuals with complications and positively related to vascular and renal dysfunction, body mass index, glycated haemoglobin, lipids, inflammation and oxidative stress.
Resumo:
AIMS: To assess quantitatively variations in the extent of capillary basement membrane (BM) thickening between different retinal layers and within arterial and venous environments during diabetes. METHODS: One year after induction of experimental (streptozotocin) diabetes in rats, six diabetic animals together with six age-matched control animals were sacrificed and the retinas fixed for transmission electron microscopy (TEM). Blocks of retina straddling the major arteries and veins in the central retinal were dissected out, embedded in resin, and sectioned. Capillaries in close proximity to arteries or veins were designated as residing in either an arterial (AE) or a venous (VE) environment respectively, and the retinal layer in which each capillary was located was also noted. The thickness of the BM was then measured on an image analyser based two dimensional morphometric analysis system. RESULTS: In both diabetics and controls the AE capillaries had consistently thicker BMs than the VE capillaries. The BMs of both AE and VE capillaries from diabetics were thicker than those of capillaries in the corresponding retinal layer from the normal rats (p <or = 0.005). Also, in normal AE and VE capillaries and diabetic AE capillaries the BM in the nerve fibre layer (NFL) was thicker than that in either the inner (IPL) or outer (OPL) plexiform layers (p <or = 0.001). However, in diabetic VE capillaries the BMs of capillaries in the NFL were thicker than those of capillaries in the IPL (p <or = 0.05) which, in turn, had thicker BMs than capillaries in the OPL (p <or = 0.005). CONCLUSIONS: The variation in the extent of capillary BM thickening between different retinal layers within AE and VE environments may be related to differences in levels of oxygen tension and oxidative stress in the retina around arteries compared with that around veins.
Resumo:
The ability to predict the mechanical behavior of polymer composites is crucial for their design and manufacture. Extensive studies based on both macro- and micromechanical analyses are used to develop new insights into the behavior of composites. In this respect, finite element modeling has proved to be a particularly powerful tool. In this article, we present a Galerkin scheme in conjunction with the penalty method for elasticity analyses of different types of polymer composites. In this scheme, the application of Green's theorem to the model equation results in the appearance of interfacial flux terms along the boundary between the filler and polymer matrix. It is shown that for some types of composites these terms significantly affect the stress transfer between polymer and fillers. Thus, inclusion of these terms in the working equations of the scheme preserves the accuracy of the model predictions. The model is used to predict the most important bulk property of different types of composites. Composites filled with rigid or soft particles, and composites reinforced with short or continuous fibers are investigated. For each case, the results are compared with the available experimental results and data obtained from other models reported in the literature. Effects of assumptions made in the development of the model and the selection of the prescribed boundary conditions are discussed.
Resumo:
As a comparative newly-invented PKM with over-constraints in kinematic chains, the Exechon has attracted extensive attention from the research society. Different from the well-recognized kinematics analysis, the research on the stiffness characteristics of the Exechon still remains as a challenge due to the structural complexity. In order to achieve a thorough understanding of the stiffness characteristics of the Exechon PKM, this paper proposed an analytical kinetostatic model by using the substructure synthesis technique. The whole PKM system is decomposed into a moving platform subsystem, three limb subsystems and a fixed base subsystem, which are connected to each other sequentially through corresponding joints. Each limb body is modeled as a spatial beam with a uniform cross-section constrained by two sets of lumped springs. The equilibrium equation of each individual limb assemblage is derived through finite element formulation and combined with that of the moving platform derived with Newtonian method to construct the governing kinetostatic equations of the system after introducing the deformation compatibility conditions between the moving platform and the limbs. By extracting the 6 x 6 block matrix from the inversion of the governing compliance matrix, the stiffness of the moving platform is formulated. The computation for the stiffness of the Exechon PKM at a typical configuration as well as throughout the workspace is carried out in a quick manner with a piece-by-piece partition algorithm. The numerical simulations reveal a strong position-dependency of the PKM's stiffness in that it is symmetric relative to a work plane due to structural features. At the last stage, the effects of some design variables such as structural, dimensional and stiffness parameters on system rigidity are investigated with the purpose of providing useful information for the structural optimization and performance enhancement of the Exechon PKM. It is worthy mentioning that the proposed methodology of stiffness modeling in this paper can also be applied to other overconstrained PKMs and can evaluate the global rigidity over workplace efficiently with minor revisions.
Resumo:
Previous investigators have not described some of the new anatomic variations or provided quantitative and analytical data of the arterial anatomy of the lips in as much depth as in this study. Dissections of 14 different facial sides of cadavers were done. Through investigating the arterial supply of the upper and lower lips, measurements were performed and statistically analyzed. The main arterial supply of the upper lip was from the superior labial artery (SLA, mean external diameter, 1.8 mm [SD, 0.74 mm]); in addition, the subalar and septal branches contributed to its vascularization. The origin of the SLA was above the labial commissure in 78.6%. The subalar branch was not found but replaced by the alar artery that arose from the infraorbital artery in 1 specimen. The main arterial supply of the lower lip was derived from 3 branches of the facial artery, the inferior labial artery (mean external diameters, 1.4 mm [SD, 0.31 mm]) and the horizontal and vertical labiomental arteries. The inferior labial artery originated mostly below the labial commissure in 42.9% and formed a common trunk with the SLA in 28.6%. The horizontal labiomental artery was present in all, but vertical labiomental artery was absent in 21.4% of specimens. Overall, observed anatomic variations were classified into types I to VIII. Significant relations between the demographic variables and measured parameters were reported including the correlation coefficient among evaluated parameters. In conclusion, this study provides various information that aids in creating new flaps and supports the vascular base for clinical procedures in reconstructive surgery of the lip.
Resumo:
A precise knowledge of the sources of the arterial and neural supply of the sternohyoid (SH), sternothyroid (STM), and superior belly of omohyoid (OM) is of value to surgeons using the infrahyoid muscles in reconstruction procedures of the head and neck. This study was designed to define the anatomical bases of the variable sources of the arterial and neural supply of these muscles. Fourteen cadavers were unilaterally dissected in the neck region, and the arterial pedicles of these muscles were followed and accurate measurements were taken. For the SH, two arterial pedicles (superior and inferior) originated from the superior thyroid artery ST and supplied the muscle in 57.1% of cases. The inferior pedicle was absent in 42.9% of cases. As regards the STM, one arterial pedicle from the ST supplied its upper end by multiple branches in 57.1% of cases. In 14.3% of cases, branches from the inferior thyroid artery (IT) supplied the STM in addition to its supply from the ST. As regards the OM, two arterial pedicles originated from the ST and supplied its upper and lower ends in 57.1% of cases. The main artery from the ST to the superior belly of OM entered at its superior portion. The ansa cervicalis (AC) innervated the infrahyoid muscles. SH usually had a double nerve supply. In 57.1% of cases, its superior part was innervated by the nerve to the superior belly of OM. Its inferior part received branches from the AC. In 35.7% of cases, its superior part received direct branches from the AC. As regards the STM, in (71.4%) of cases, a common trunk arose from the loop and supplied the inferior part of both the SH and STM. The nerve supply to the superior belly of OM originated from the AC below the loop in 64.3% of cases. These data will be useful for preserving the neuro-vascular supply of the infrahyoid muscles during flap preparation.
Resumo:
The abductor hallucis flap is commonly used as a pedicled flap (distally or proximally based) in the management of ankle, heel, and mid-foot lesions, where it is ideally used for closing defects. This study investigates the anatomical details of this muscle regarding its various forms of insertion and its arterial supply in 15 cadaveric feet. Four types of insertion could be distinguished: type A, insertion at the proximal phalanx of the big toe (46.7%); type B, insertion by two slips into the base of the proximal phalanx and the sesamoid bone (33.3%); type C, insertion at the sesamoid bone (6.7%); And type D, the insertion is divided into superficial tendinous and deep fleshy parts which are attached to the base of the proximal phalanx and to the metatarsophalangeal joint capsule of the big toe, respectively (13.3%). As regards the arterial supply, three patterns were noticed: pattern A (40%) where the medial plantar artery (MPA) is divided into superficial and deep branches that supplied the muscle; pattern B (53.3%) where the MPA failed to produce a deep branch but instead continued as the superficial branch supplying the two ends of the muscle; and pattern C (6.6%) where the MPA continued as a deep branch supplying the muscle. A superficial branch of MPA provided a branch to the abductor hallucis muscle from its proximal part. In two specimens (13.3%), the lateral plantar artery shared in the supply of the most proximal part of the muscle. These results can be useful in determining the appropriate flap design based on the abductor hallucis type of insertion and the pattern of its arterial supply in the patients.