103 resultados para allogeneic hematopoietic stem cell transplantation
Resumo:
The response of granulocyte-macrophage progenitor cells (in vitro colony-forming cells) and of colony-stimulating (CS) factor in serum were studied in mice infected intraperitoneally with 10(3) viable Salmonella typhimurium. Increases in the number of colony-forming cells in marrow and spleen and increases in the serum level of CS factor occurred during the infection. There was no evidence to suggest that progressive infection was associated with failure of macrophage production. Medium rich in CS factor increased the bactericidal activity of macrophages in vitro and it was suggested that CS factor could be involved in macrophage activation.
Resumo:
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis.
Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5 Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5–5 Gy) and low doses (<0.5 Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity.
This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Resumo:
The ability to reprogram induced pluripotent stem (iPS) cells from somatic cells may facilitate significant advances in regenerative medicine. MicroRNAs (miRNAs) are involved in a number of core biological processes, including cardiogenesis, hematopoietic lineage differentiation and oncogenesis. An improved understanding of the complex molecular signals that are required for the differentiation of iPS cells into endothelial cells (ECs) may allow specific targeting of their activity in order to enhance cell differentiation and promote tissue regeneration. The present study reports that miR‑199a is involved in EC differentiation from iPS cells. Augmented expression of miR‑199a was detected during EC differentiation, and reached higher levels during the later stages of this process. Furthermore, miR‑199a inhibited the differentiation of iPS cells into smooth muscle cells. Notably, sirtuin 1 was identified as a target of miR‑199a . Finally, the ability of miR‑199a to induce angiogenesis was evaluated in vitro, using Matrigel plugs assays. This may indicate a novel function for miR‑199a as a regulator of the phenotypic switch during vascular cell differentiation. The present study provides support to the notion that with an understanding of the molecular mechanisms underlying vascular cell differentiation, stem cell regenerative therapy may ultimately be developed as an effective treatment for cardiovascular disease.
Resumo:
Peripheral blood-derived multi-potent mesenchymal stromal cells circulate in low number. They share, though not all, but most of the surface markers with bone marrow-derived multi-potent mesenchymal stromal cells, possess diverse and complicated gene expression characteristics, and are capable of differentiating along and even beyond mesenchymal lineages. Although their origin and physio-pathological function are still unclear, their presence in the adult peripheral blood might relate to some interesting but controversial subjects in the filed of adult stem cell biology, such as systemic migration of bone marrow-derived multi-potent mesenchymal stromal cells and the existence of common hematopoietic-mesenchymal precursors. In this review, current studies/knowledge about peripheral blood-derived multi-potent mesenchymal stromal cells is summarized and the above-mentioned topics are discussed.
Resumo:
Summary Bortezomib (formerly PS-341) has significant activity in patients with relapsed multiple myeloma (MM), its efficacy is increased with the addition of dexamethasone and it demonstrates synergy with doxorubicin, thus providing the rationale for combination therapy with bortezomib, doxorubicin and dexamethasone (PAD). Patients with untreated MM received four 21-d cycles of PAD, comprising bortezomib 1·3 mg/m2 on days 1, 4, 8 and 11, along with dexamethasone 40 mg on days 1–4, 8–11 and 15–18 during cycle 1 and days 1–4 during cycles 2–4. During days 1–4, patients also received 0, 4·5 or 9 mg/m2 of doxorubicin at dose levels 1, 2, and 3 respectively. Following peripheral blood stem cell (PBSC) collection, patients received high-dose melphalan (MEL200) with PBSC transplantation (PBSCT). After PAD induction alone, 20 of 21 patients (95%) achieved at least a partial response (PR), including complete response (CR) in five patients (24%). Twenty of 21 had PBSC mobilized, and 18 of 20 received MEL200/PBSCT. In an intention-to-treat analysis, response rates were: CR 43%, near CR 14%, very good PR 24%, PR 14% and stable disease 5%. PAD was effective, did not prejudice subsequent PBSC collection, and should be further evaluated in prospective randomized trials.
Resumo:
Research has focused on in vitro expansion of bone marrow stromal cells with the aim of developing cell-based therapies or tissue-engineered constructs. There is debate over whether there is a reduction in stem cells/osteoprogenitors in the bone marrow compartment with increasing age. The aim of this study was to investigate patient factors that affect the progenitor pool in bone marrow samples. Six milliliters of marrow aspirate was obtained from the femoral canal of 38 primary hip replacement patients (aged 28-91). Outcome measures were total nucleated cell count, colony-forming efficiency, alkaline phosphatase expression, and expression of stem cell markers. There was a nonsignificant negative correlation between age and both colony-forming efficiency and stem cell marker expression. However, body mass index showed a positive, significant correlation with colony area and number in men-accounting for up to 75% of the variation. In conclusion, body mass index, not age, was highly predictive of the number of progenitors found in bone marrow, and this relationship was sex specific. These results may inform the clinician's treatment choice when considering bone marrow-based therapies. Further, it highlights the need to widen research into patient factors that affect the adult stem cell population beyond age and reinforces the need to consider sexes separately.
Resumo:
Distinct cell populations with regenerative capacity have been reported to contribute to myofibres after skeletal muscle injury, including non-satellite cells as well as myogenic satellite cells. However, the relative contribution of these distinct cell types to skeletal muscle repair and homeostasis and the identity of adult muscle stem cells remain unknown. We generated a model for the conditional depletion of satellite cells by expressing a human diphtheria toxin receptor under control of the murine Pax7 locus. Intramuscular injection of diphtheria toxin during muscle homeostasis, or combined with muscle injury caused by myotoxins or exercise, led to a marked loss of muscle tissue and failure to regenerate skeletal muscle. Moreover, the muscle tissue became infiltrated by inflammatory cells and adipocytes. This localised loss of satellite cells was not compensated for endogenously by other cell types, but muscle regeneration was rescued after transplantation of adult Pax7(+) satellite cells alone. These findings indicate that other cell types with regenerative potential depend on the presence of the satellite cell population, and these observations have important implications for myopathic conditions and stem cell-based therapeutic approaches.
Resumo:
A method was devised to grow haemopoietic cells in long-term bone marrow culture (LTBMC) which requires only 1 x 10(6) cells/culture. Such miniature cultures were used to study growth patterns of marrow from patients with myelodysplastic syndromes (MDS). Consistent differences in LTBMC cellularity and cellular composition were noted between MDS and normal marrow. These differences were accentuated by rGM-CSF. The criteria which distinguished between and MDS marrows were: cell count at weeks 1 and 4, % neutrophils and % blasts. In 10 patients with unexplained macrocytosis or pancytopenia miniature LTBMC results clearly segregated into either 'normal' or 'MDS' growth patterns. Miniature LTBMC with rGM-CSF may therefore be a useful diagnostic test for early MDS.
Resumo:
Ischaemia-related diseases such as peripheral artery disease and coronary heart disease constitute a major issue in medicine as they affect millions of individuals each year and represent a considerable economic burden to healthcare systems. If the underlying ischaemia is not sufficiently resolved it can lead to tissue damage, with subsequent cell death. Treating such diseases remains difficult and several strategies have been used to stimulate the growth of blood vessels and promote regeneration of ischaemic tissues, such as the use of recombinant proteins and gene therapy. Although these approaches remain promising, they have limitations and results from clinical trials using these methods have had limited success. Recently, there has been growing interest in the therapeutic potential of using a cell-based approach to treat vasodegenerative disorders. In vascular medicine, various stem cells and adult progenitors have been highlighted as having a vasoreparative role in ischaemic tissues. This review will examine the clinical potential of several stem and progenitor cells that may be utilised to regenerate defunct or damaged vasculature and restore blood flow to the ischaemic tissue. In particular, we focus on the therapeutic potential of endothelial progenitor cells as an exciting new option for the treatment of ischaemic diseases. © 2012 BioMed Central Ltd
Resumo:
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GF(P)+ hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity. (Am J Pathol 2011, 178:1517-1524; DOI: 10.1016/j.ajpath.2010.12.031)
Resumo:
Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.
Resumo:
Histone deacetylases (HDACs) are a family of enzymes that remove acetyl groups from lysine residues of histone proteins, a modification that results in epigenetic modulation of gene expression. Although originally shown to be involved in cancer and neurological disease, HDACs are also found to play crucial roles in arteriosclerosis. This review summarizes the effects of HDACs and HDAC inhibitors on proliferation, migration, and apoptosis of endothelial and smooth muscle cells. In addition, an updated discussion of HDACs' recently discovered effects on stem cell differentiation and atherosclerosis is provided. Overall, HDACs appear to be promising therapeutic targets for the treatment of arteriosclerosis and other cardiovascular diseases.
Resumo:
Stem cells have the ability to differentiate into a variety of cells to replace dead cells or to repair tissue. Recently, accumulating evidence indicates that mechanical forces, cytokines and other factors can influence stem cell differentiation into vascular smooth muscle cells (SMCs). In developmental process, SMCs originate from several sources, which show a great heterogenicity in different vessel walls. In adult vessels, SMCs display a less proliferative nature, but are altered in response to risk factors for atherosclerosis. Traditional view on SMC origins in atherosclerotic lesions is challenged by the recent findings that stem cells and smooth muscle progenitors contribute to the development of atherosclerotic lesions. Vascular progenitor cells circulating in human blood and the presence of adventitia in animals are recent discoveries, but the source of these cells is still unknown. The present review gives an update on the progress of stem cell and SMC research in atherosclerosis, and discusses possible mechanisms of stem/progenitor cell differentiation that contribute to the disease process.
Resumo:
PURPOSE: FKBPL and its peptide derivative, AD-01, have already demonstrated tumour growth inhibition and CD44 dependent anti-angiogenic activity. Here we explore the ability of AD-01 to target CD44 positive breast cancer stem cells (BCSCs). EXPERIMENTAL DESIGN: Mammosphere assays and flow cytometry were utilized to analyse the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anti-cancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples and xenografts. Delays in tumour initiation were evaluated in vivo. The anti-stem cell mechanisms were determined using clonogenic assays, qPCR and immunofluorescence. RESULTS: AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere forming efficiency (MFE) and ESA+/CD44+/CD24- or ALDH+ cell subpopulations in vitro and tumour initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism appears to be due to AD-01-mediated BCSC differentiation demonstrated by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4 and Sox2, were also significantly reduced. Furthermore, we demonstrated additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signalling. CONCLUSIONS: AD-01 has dual anti-angiogenic and anti-BCSC activity which will be advantageous as this agent enters clinical trial.
Resumo:
Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.