100 resultados para Univalent Functions
Resumo:
Bit-level systolic-array structures for computing sums of products are studied in detail. It is shown that these can be subdivided into two classes and that within each class architectures can be described in terms of a set of constraint equations. It is further demonstrated that high-performance system-level functions with attractive VLSI properties can be constructed by matching data-flow geometries in bit-level and word-level architectures.
Resumo:
In this paper we present a generalization of belief functions over fuzzy events. In particular we focus on belief functions defined in the algebraic framework of finite MV-algebras of fuzzy sets. We introduce a fuzzy modal logic to formalize reasoning with belief functions on many-valued events. We prove, among other results, that several different notions of belief functions can be characterized in a quite uniform way, just by slightly modifying the complete axiomatization of one of the modal logics involved in the definition of our formalism. © 2012 Elsevier Inc. All rights reserved.
Resumo:
Field-induced polarization (FIP) functions were proposed over two decades ago to improve the accuracy of calculated response properties, and the FIP functions in GTO form for H and C to F were tested on small molecules, with encouraging results. The concept of FIP,is now extended to all atoms up to Kr. New simplifying approximations for the description of asymptotic highest occupied atomic orbitals. (HOAOs) are introduced in this study. They provide the basis for STO and GTO exponents of a complete set of FIP functions from H to Kr, which are both listed for the convenience of the users. Tests on the polarizabilities of a series of atoms and molecules demonstrate that addition of the FIP basis functions to a series' of standard basis sets drastically improves the performance of all these basis sets compared to converged results. Moreover, the byproduct of this study (approximate asymptotic HOAOs) provides information for the construction of accurate basis sets for long-range ground state properties. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Let T be a compact disjointness preserving linear operator from C0(X) into C0(Y), where X and Y are locally compact Hausdorff spaces. We show that T can be represented as a norm convergent countable sum of disjoint rank one operators. More precisely, T = Snd ?hn for a (possibly finite) sequence {xn }n of distinct points in X and a norm null sequence {hn }n of mutually disjoint functions in C0(Y). Moreover, we develop a graph theoretic method to describe the spectrum of such an operator
Resumo:
Osteosarcoma (OS) is a primary bone tumor that is most prevalent during adolescence. RUNX2, which stimulates differentiation and suppresses proliferation of osteoblasts, is deregulated in OS. Here, we define pathological roles of RUNX2 in the etiology of OS and mechanisms by which RUNX2 expression is stimulated. RUNX2 is often highly expressed in human OS biopsies and cell lines. Small interference RNA (siRNA)-mediated depletion of RUNX2 inhibits growth of U2OS OS cells. RUNX2 levels are inversely linked to loss of p53 (which predisposes to OS) in distinct OS cell lines and osteoblasts. RUNX2 protein levels decrease upon stabilization of p53 with the MDM2 inhibitor Nutlin-3. Elevated RUNX2 protein expression is post-transcriptionally regulated and directly linked to diminished expression of several validated RUNX2 targeting microRNAs (miRNAs) in human OS cells compared to mesenchymal progenitor cells. The p53-dependent miR-34c is the most significantly down-regulated RUNX2 targeting miRNA in OS. Exogenous supplementation of miR-34c markedly decreases RUNX2 protein levels, while 3UTR reporter assays establish RUNX2 as a direct target of miR-34c in OS cells. Importantly, Nutlin-3 mediated stabilization of p53 increases expression of miR-34c and decreases RUNX2. Thus, a novel RUNX2-p53-miR34 network controls cell growth of osseous cells and is compromised in OS.
Resumo:
The Runt domain transcription factor, RUNX3, has been shown to be a tumor suppressor in a variety of cancers including gastric, colon and breast cancer. Interestingly, an oncogenic role for RUNX3 has also been suggested in basal cell carcinoma and head and neck cancer. Here, we explore the role of RUNX3 in ovarian cancer.
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
Predictive Demand Response (DR) algorithms allow schedulable loads in power systems to be shifted to off-peak times. However, the size of the optimisation problems associated with predictive DR can grow very large and so efficient implementations of algorithms are desirable. In this paper Laguerre functions are used to significantly reduce the size of the optimisation needed to implement predictive DR, thus significantly increasing the efficiency of the implementation. © 2013 IEEE.
Resumo:
Relatively few measurements of the solar phase function of cometary nuclei exist, despite the importance of this parameter in determining accurate sizes and its use in modeling surface properties. We make use of robotic telescopes and servicemode observing to monitor cometary nuclei over months at a time, combining intensive observations at a single epoch with regular short light-curve segments to efficiently account for brightness changes due to both nucleus rotation and changing solar phase angle. We present our latest results on comets 8P/Tuttle, 14P/Wolf, 67P/Churyumov- Gerasimenko and 110P/Hartley 3.