176 resultados para Steel fibers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ductility of concrete made with commercially available steel and synthetic fibres has been investigated. Flexural stress–deflection relationships have been used to determine: flexural strength, flexural toughness, equivalent flexural strength, and equivalent flexural strength ratio. The flexural toughness of concrete was found to increase considerably when steel and synthetic fibres were used. However, equal dosages of different fibres did not result in specimens with the same flexural toughness. Flexural toughness differences of almost 35 J existed even at the same fibre dosage. This also resulted in considerable differences in the minimum required ground supported slab thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors have recently described a cold-formed steel portal framing system in which simple bolted moment-connections, formed through brackets, were used for the eaves and apex joints. Such connections, however, cannot be considered as rigid because of localised in-plane elongation of the bolt-holes caused by bearing against the bolt-shanks. To therefore predict the initial stiffness of such connections, it is necessary to know the initial bolt-hole elongation stiffness k(b). In this paper, a finite element-solid idealisation of a bolted lap joint in shear will be described that can be used to determine k(b); the results obtained are validated against experimental data. A beam idealisation of a cold-formed steel bolted moment-connection is then described, in which spring elements are used to idealise the rotational flexibility of the bolt-groups resulting from bolt-hole elongation: Using the value of k(b) in the beam idealisation, the deflections predicted are shown to be similar to those measured experimentally in laboratory tests conducted on the apex joint of a cold-formed steel portal frame. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-linear large-displacement elasto-plastic finite element analyses are used to propose design recommendations for the eaves bracket of a cold-formed steel portal frame. Owing to the thinness of the sheet steel used for the brackets, such a structural design problem is not trivial as the brackets need to be designed against failure through buckling; without availability of the finite element method, expensive laboratory testing would therefore be required. In this paper, the finite element method is firstly used to predict the plastic moment capacity of the eaves bracket. Parametric studies are then used to propose design recommendations for the eaves bracket against two potential buckling modes of failure:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour and design of bolted moment-connections between cold-formed steel members, formed by using brackets bolted to the webs of the section, is considered. The particular problem of the moment-capacity of such joints being lower than that of the cold-formed steel sections being connected because of web buckling, caused by the concentration of load transfer from the bolts, is addressed. In this paper, a combination of laboratory tests and finite element analyses is used to investigate this mode of failure. It is demonstrated that there is good agreement between the measured ultimate moment-capacity and that predicted by using the finite element method. A parametric study conducted using the finite element model shows that the moment-capacity of a practical size joint can be up to 20% lower than that of the cold-formed steel sections being connected. Web buckling so-caused must therefore be considered in the design of such connections. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple linear beam idealization of a cold-formed steel portal frame is presented in which beam elements are used to idealize the column and rafter members, and rotational spring elements are used to represent the rotational flexibility of the joints. In addition, the beam idealization takes into account the finite connection length of the joints. Deflections predicted using the beam idealization are shown to be comparable to deflections obtained from both a linear finite element shell idealization and full-scale laboratory tests. Using the beam idealization, deflections under rafter load are divided into three components: Deflection due to flexure of the column and rafter members, deflection due to bolt-hole elongation, and deflection due to in-plane bracket deformation. Of these deflection components, the deflection due to bolt-hole elongation is the most significant and cannot, therefore, be ignored. Using the beam idealization, engineers can analyze and design cold-formed steel portal frames, including making appropriate allowances for connection effects, without the need to resort to expensive finite element shell analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Details are given of a cold-formed steel portal framing system that uses simple bolted moment-connections for both the eaves and apex joints. However, such joints function as semi-rigid and, as a result, the design of the proposed system will be dominated by serviceability requirements. While serviceability is a mandatory design requirement, actual deflection limits for portal frames are not prescribed in many of the national standards. In this paper, a review of the design constraints that have an effect on deflection limits is discussed, and rational values appropriate for use with cold-formed steel portal frames are recommended. Adopting these deflection limits, it is shown through a design example how a cold-formed steel portal frame having semi-rigid eaves and apex joints can be a feasible alternative to rigid-jointed frames in appropriate circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental investigations at ambient temperature into the behaviour of bolted moment-connections between cold-formed steel members have previously been described. Full-scale joint tests have demonstrated that the channel-sections being connected are susceptible to premature failure, the result of web buckling caused by the concentration of load transfer from the bolts. The results of tests on bolted lap joints have been used to propose design recommendations for the shear strength in bearing of the bolt-hole. For both types of test, the results of non-linear elasto-plastic finite element analyses have been shown to have good agreement. No consideration, however, has been given to the behaviour of such connections at elevated temperatures. This paper describes non-linear elasto-plastic finite element parametric studies into the effects of elevated temperatures on bolted moment-connections between cold-formed steel members. Two issues at elevated temperatures are investigated:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel portal frames are a popular form of construction for low-rise commercial, light industrial and agricultural buildings with spans of up to 20 m. In this article, a real-coded genetic algorithm is described that is used to minimize the cost of the main frame of such buildings. The key decision variables considered in this proposed algorithm consist of both the spacing and pitch of the frame as continuous variables, as well as the discrete section sizes.A routine taking the structural analysis and frame design for cold-formed steel sections is embedded into a genetic algorithm. The results show that the real-coded genetic algorithm handles effectively the mixture of design variables, with high robustness and consistency in achieving the optimum solution. All wind load combinations according to Australian code are considered in this research. Results for frames with knee braces are also included, for which the optimization achieved even larger savings in cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The results of 82 web crippling tests are presented, with 20 tests conducted on channel sections without web openings and 62 tests conducted on channel sections with web openings. The tests consider both end-two-flange and interior-two-flange loading conditions. In the case of the tests with web openings, the hole was located directly under the concentrated load. The concentrated load was applied through bearing plates; the effect of different bearing lengths is investigated. In addition, the cases of both flanges fastened and unfastened to the support is considered. A non-linear elasto-plastic finite element model is described, and the results compared against the laboratory test results; a good agreement was obtained in terms of both strength and failure modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric study of cold-formed steel sections with web openings subjected to web crippling was undertaken using finite element analysis, to investigate the effects of web holes and cross-section sizes on the web crippling strengths of channel sections subjected to web crippling under both interior-two-flange (ITF) and end-two-flange (ETF) loading conditions. In both loading conditions, the hole was centred beneath the bearing plate. It was demonstrated that the main factors influencing the web crippling strength are the ratio of the hole depth to the flat depth of the web, and the ratio of the length of bearing plates to the flat depth of the web. In this paper, design recommendations in the form of web crippling strength reduction factors are proposed, that are conservative to both the experimental and finite element results.