150 resultados para Statistical inference
Resumo:
Emotion research has long been dominated by the “standard method” of displaying posed or acted static images of facial expressions of emotion. While this method has been useful it is unable to investigate the dynamic nature of emotion expression. Although continuous self-report traces have enabled the measurement of dynamic expressions of emotion, a consensus has not been reached on the correct statistical techniques that permit inferences to be made with such measures. We propose Generalized Additive Models and Generalized Additive Mixed Models as techniques that can account for the dynamic nature of such continuous measures. These models allow us to hold constant shared components of responses that are due to perceived emotion across time, while enabling inference concerning linear differences between groups. The mixed model GAMM approach is preferred as it can account for autocorrelation in time series data and allows emotion decoding participants to be modelled as random effects. To increase confidence in linear differences we assess the methods that address interactions between categorical variables and dynamic changes over time. In addition we provide comments on the use of Generalized Additive Models to assess the effect size of shared perceived emotion and discuss sample sizes. Finally we address additional uses, the inference of feature detection, continuous variable interactions, and measurement of ambiguity.
Resumo:
The inherent difficulty of thread-based shared-memory programming has recently motivated research in high-level, task-parallel programming models. Recent advances of Task-Parallel models add implicit synchronization, where the system automatically detects and satisfies data dependencies among spawned tasks. However, dynamic dependence analysis incurs significant runtime overheads, because the runtime must track task resources and use this information to schedule tasks while avoiding conflicts and races.
We present SCOOP, a compiler that effectively integrates static and dynamic analysis in code generation. SCOOP combines context-sensitive points-to, control-flow, escape, and effect analyses to remove redundant dependence checks at runtime. Our static analysis can work in combination with existing dynamic analyses and task-parallel runtimes that use annotations to specify tasks and their memory footprints. We use our static dependence analysis to detect non-conflicting tasks and an existing dynamic analysis to handle the remaining dependencies. We evaluate the resulting hybrid dependence analysis on a set of task-parallel programs.
Resumo:
The techniques of principal component analysis (PCA) and partial least squares (PLS) are introduced from the point of view of providing a multivariate statistical method for modelling process plants. The advantages and limitations of PCA and PLS are discussed from the perspective of the type of data and problems that might be encountered in this application area. These concepts are exemplified by two case studies dealing first with data from a continuous stirred tank reactor (CSTR) simulation and second a literature source describing a low-density polyethylene (LDPE) reactor simulation.
Resumo:
Summary: We present a new R package, diveRsity, for the calculation of various diversity statistics, including common diversity partitioning statistics (?, G) and population differentiation statistics (D, GST ', ? test for population heterogeneity), among others. The package calculates these estimators along with their respective bootstrapped confidence intervals for loci, sample population pairwise and global levels. Various plotting tools are also provided for a visual evaluation of estimated values, allowing users to critically assess the validity and significance of statistical tests from a biological perspective. diveRsity has a set of unique features, which facilitate the use of an informed framework for assessing the validity of the use of traditional F-statistics for the inference of demography, with reference to specific marker types, particularly focusing on highly polymorphic microsatellite loci. However, the package can be readily used for other co-dominant marker types (e.g. allozymes, SNPs). Detailed examples of usage and descriptions of package capabilities are provided. The examples demonstrate useful strategies for the exploration of data and interpretation of results generated by diveRsity. Additional online resources for the package are also described, including a GUI web app version intended for those with more limited experience using R for statistical analysis. © 2013 British Ecological Society.