87 resultados para Single accelerator systems
Resumo:
We investigate the transport of phonons between N harmonic oscillators in contact with independent thermal baths and coupled to a common oscillator, and derive an expression for the steady state heat flow between the oscillators in the weak coupling limit. We apply these results to an optomechanical array consisting of a pair of mechanical resonators coupled to a single quantized electromagnetic field mode by radiation pressure as well as to thermal baths with different temperatures. In the weak coupling limit this system is shown to be equivalent to two mutually-coupled harmonic oscillators in contact with an effective common thermal bath in addition to their independent baths. The steady state occupation numbers and heat flows are derived and discussed in various regimes of interest.
Resumo:
Many AMS systems can measure 14C, 13C and 12C simultaneously thus providing δ13C values which can be used for fractionation normalization without the need for offline 13C /12C measurements on isotope ratio mass spectrometers (IRMS). However AMS δ13C values on our 0.5MV NEC Compact Accelerator often differ from IRMS values on the same material by 4-5‰ or more. It has been postulated that the AMS δ13C values account for the potential graphitization and machine induced fractionation, in addition to natural fractionation, but how much does this affect the 14C ages or F14C? We present an analysis of F14C as a linear least squares fit with AMS δ13C results for several of our secondary standards. While there are samples for which there is an obvious correlation between AMS δ13C and F14C, as quantified with the calculated probability of no correlation, we find that the trend lies within one standard deviation of the variance on our F14C measurements. Our laboratory produces both zinc and hydrogen reduced graphite, and we present our results for each type. Additionally, we show the variance on our AMS δ13C measurements of our secondary standards.
Resumo:
A microcosm system was developed to investigate transfers of organic xenobiotics in air-soil-plant systems. This was validated using 14C labelled 1,2-dichlorobenzene (DCB) as a model compound. Trapping efficiency was 106 ± 3% for volatile compounds and 93.0 ± 2.2% for carbon dioxide in a blank microcosm arrangement. Recovery of 1,2-dichlorobenzene spiked to grassed and unplanted soils was > 90% after 1 week. The predominant DCB loss process was volatilisation with no evidence for mineralisation over 1 week and 20-30% of the added spike remained in soil. Although there was no evidence for root uptake and translocation of added label, foliar uptake of soil volatilised compound was detected. The microcosm showed good potential for study of 14C labelled and unlabelled organic xenobiotic transfers in air-soil-plant systems with single plants and also intact planted cores.
Resumo:
A relay network in which a source wishes to convey a confidential message to a legitimate destination with the assistance of trusted relays is considered. In particular, cooperative beamforming and user selection techniques are applied to protect the confidential message. The secrecy rate (SR) and secrecy outage probability (SOP) of the network are investigated first, and a tight upper bound for the SR and an exact formula for the SOP are derived. Next, asymptotic approximations for the SR and SOP in the high signal-to-noise ratio (SNR) regime are derived for two different schemes: i) cooperative beamforming and ii) multiuser selection. Further, a new concept of cooperative diversity gain, namely, adapted cooperative diversity gain (ACDG), which can be used to evaluate security level of a cooperative relaying network, is investigated. It is shown that the ACDG of cooperative beamforming is equal to the conventional cooperative diversity gain of traditional multiple-input single-output networks, while the ACDG of the multiuser scenario is equal to that of traditional single-input multiple-output networks.
Resumo:
We consider an optomechanical quantum system composed of a single cavity mode interacting with N mechanical resonators. We propose a scheme for generating continuous-variable graph states of arbitrary size and shape, including the so-called cluster states for universal quantum computation. The main feature of this scheme is that, differently from previous approaches, the graph states are hosted in the mechanical degrees of freedom rather than in the radiative ones. Specifically, via a 2N-tone drive, we engineer a linear Hamiltonian which is instrumental to dissipatively drive the system to the desired target state. The robustness of this scheme is assessed against finite interaction times and mechanical noise, confirming it as a valuable approach towards quantum state engineering for continuous-variable computation in a solid-state platform.
Resumo:
The increasing scale of Multiple-Input Multiple- Output (MIMO) topologies employed in forthcoming wireless communications standards presents a substantial implementation challenge to designers of embedded baseband signal processing architectures for MIMO transceivers. Specifically the increased scale of such systems has a substantial impact on the perfor- mance/cost balance of detection algorithms for these systems. Whilst in small-scale systems Sphere Decoding (SD) algorithms offer the best quasi-ML performance/cost balance, in larger systems heuristic detectors, such Tabu-Search (TS) detectors are superior. This paper addresses a dearth of research in architectures for TS-based MIMO detection, presenting the first known realisations of TS detectors for 4 × 4 and 10 × 10 MIMO systems. To the best of the authors’ knowledge, these are the largest single-chip detectors on record.
Resumo:
Emerging web applications like cloud computing, Big Data and social networks have created the need for powerful centres hosting hundreds of thousands of servers. Currently, the data centres are based on general purpose processors that provide high flexibility buts lack the energy efficiency of customized accelerators. VINEYARD aims to develop an integrated platform for energy-efficient data centres based on new servers with novel, coarse-grain and fine-grain, programmable hardware accelerators. It will, also, build a high-level programming framework for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems by employing typical data-centre programming frameworks (e.g. MapReduce, Storm, Spark, etc.). This programming framework will, further, allow the hardware accelerators to be swapped in and out of the heterogeneous infrastructure so as to offer high flexibility and energy efficiency. VINEYARD will foster the expansion of the soft-IP core industry, currently limited in the embedded systems, to the data-centre market. VINEYARD plans to demonstrate the advantages of its approach in three real use-cases (a) a bio-informatics application for high-accuracy brain modeling, (b) two critical financial applications, and (c) a big-data analysis application.
Resumo:
In this paper, we consider the uplink of a single-cell multi-user single-input multiple-output (MU-SIMO) system with in-phase and quadrature-phase imbalance (IQI). Particularly, we investigate the effect of receive (RX) IQI on the performance of MU-SIMO systems with large antenna arrays employing maximum-ratio combining (MRC) receivers. In order to study how IQI affects channel estimation, we derive a new channel estimator for the IQI-impaired model and show that the higher the value of signal-to-noise ratio (SNR) the higher the impact of IQI on the spectral efficiency (SE). Moreover, a novel pilot-based joint estimator of the augmented MIMO channel matrix and IQI coefficients is described and then, a low-complexity IQI compensation scheme is proposed which is based on the
IQI coefficients’ estimation and it is independent of the channel gain. The performance of the proposed compensation scheme is analytically evaluated by deriving a tractable approximation of the ergodic SE assuming transmission over Rayleigh fading channels with large-scale fading. Furthermore, we investigate how many MSs should be scheduled in massive multiple-input multiple-output (MIMO) systems with IQI and show that the highest SE loss occurs at the optimal operating point. Finally,
by deriving asymptotic power scaling laws, and proving that the SE loss due to IQI is asymptotically independent of the number of BS antennas, we show that massive MIMO is resilient to the effect of RX IQI.
Resumo:
We extend the generalized Langevin equation (GLE) method [L. Stella, C. D. Lorenz, and L. Kantorovich, Phys. Rev. B 89, 134303 (2014)] to model a central classical region connected to two realistic thermal baths at two different temperatures. In such nonequilibrium conditions a heat flow is established, via the central system, in between the two baths. The GLE-2B (GLE two baths) scheme permits us to have a realistic description of both the dissipative central system and its surrounding baths. Following the original GLE approach, the extended Langevin dynamics scheme is modified to take into account two sets of auxiliary degrees of freedom corresponding to the mapping of the vibrational properties of each bath. These auxiliary variables are then used to solve the non-Markovian dissipative dynamics of the central region. The resulting algorithm is used to study a model of a short Al nanowire connected to two baths. The results of the simulations using the GLE-2B approach are compared to the results of other simulations that were carried out using standard thermostatting approaches (based on Markovian Langevin and Nosé-Hoover thermostats). We concentrate on the steady-state regime and study the establishment of a local temperature profile within the system. The conditions for obtaining a flat profile or a temperature gradient are examined in detail, in agreement with earlier studies. The results show that the GLE-2B approach is able to treat, within a single scheme, two widely different thermal transport regimes, i.e., ballistic systems, with no temperature gradient, and diffusive systems with a temperature gradient.
Resumo:
Context. The 30 Doradus (30 Dor) region of the Large Magellanic Cloud, also known as the Tarantula nebula, is the nearest starburst region. It contains the richest population of massive stars in the Local Group, and it is thus the best possible laboratory to investigate open questions on the formation and evolution of massive stars. Aims. Using ground-based multi-object optical spectroscopy obtained in the framework of the VLT-FLAMES Tarantula Survey (VFTS), we aim to establish the (projected) rotational velocity distribution for a sample of 216 presumably single O-type stars in 30 Dor. The sample is large enough to obtain statistically significant information and to search for variations among subpopulations - in terms of spectral type, luminosity class, and spatial location - in the field of view. Methods. We measured projected rotational velocities, 3e sin i, by means of a Fourier transform method and a profile fitting method applied to a set of isolated spectral lines. We also used an iterative deconvolution procedure to infer the probability density, P(3e), of the equatorial rotational velocity, 3e. Results. The distribution of 3e sin i shows a two-component structure: a peak around 80 km s1 and a high-velocity tail extending up to 600 km s-1 This structure is also present in the inferred distribution P(3e) with around 80% of the sample having 0 <3e ≤ 300 km s-1 and the other 20% distributed in the high-velocity region. The presence of the low-velocity peak is consistent with what has been found in other studies for late O- and early B-type stars. Conclusions. Most of the stars in our sample rotate with a rate less than 20% of their break-up velocity. For the bulk of the sample, mass loss in a stellar wind and/or envelope expansion is not efficient enough to significantly spin down these stars within the first few Myr of evolution. If massive-star formation results in stars rotating at birth with a large portion of their break-up velocities, an alternative braking mechanism, possibly magnetic fields, is thus required to explain the present-day rotational properties of the O-type stars in 30 Dor. The presence of a sizeable population of fast rotators is compatible with recent population synthesis computations that investigate the influence of binary evolution on the rotation rate of massive stars. Even though we have excluded stars that show significant radial velocity variations, our sample may have remained contaminated by post-interaction binary products. That the highvelocity tail may be populated primarily (and perhaps exclusively) by post-binary interaction products has important implications for the evolutionary origin of systems that produce gamma-ray bursts. © 2013 Author(s).
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.