102 resultados para Silane coupling agent
Resumo:
Recent landmark experiments have demonstrated how quantum mechanical impurities can be created within strongly correlated quantum gases and used to probe the coherence properties of these systems. Here we present a theoretical model to simulate such an output coupler for a Tonks- Girardeau gas that shows excellent agreement with the experimental results for atom transport and output coupling. The solid theoretical basis our model provides allows us to explore non-equilibrium transport phenomena in ultra-cold quantum gases and leads us to predict a regime of atom blockade, where the impurity component becomes localised in the parent cloud despite the presence of gravity. We show that this provides a stable mixed-species quantum gas in the strongly correlated limit.
Resumo:
The synthesis and photophysical evaluation of a new lanthanide luminescence imaging agent is presented. The agent, a terbium-based cyclen complex can, through the use of an iminodiacetate moiety, bind to damaged bone surface via chelation to exposed Ca(II) sites, enabling the imaging of the damage using confocal fluorescence scanning microscopy.
Resumo:
Using the theory of Eliashberg and Nambu for strong-coupling superconductors, we have calculated the gap function for a model superconductor and a selection of real superconductors includong the elements Al, Sn, Tl, Nb, In, Pb and Hg and one alloy, Bi2Tl. We have determined thetemperature-dependent gap edge in each and found that in materials with weak electron-phonon ($\lambda 1.20$), not only is the gap edge double valued but it also departs significantly from the BCS form and develops a shoulderlike structure which may, in some cases, denote a gap edge exceeding the $T = 0$ value. These computational results support the insights obtained by Leavens in an analytic consideration of the general problem. Both the shoulder and double value arise from a common origin seated in the form of the gap function in strong coupled materials at finite temperatures. From the calculated gap function, we can determine the densities of states in the materials and the form of the tunneling current-voltage characteristics for junctions with these materials as electroddes. By way of illustration, results are shown for the contrasting cases of Sn ($\lambda=0.74$) and Hg ($\lambad=1.63$). The reported results are distinct in several ways from BCS predictions and provide an incentive determinative experimental studies with techniques such as tunneling and far infrared absorption.
Resumo:
Symmetrical and unsymmetrical ligands containing terpyridyl coordinating units (N, N, N) or a cyclometalating equivalent (N, C, N), connected back-to-back either directly or via a p-terphenylene or 1,3-phenylene spacer, have been used to construct new diruthenium complexes. These compounds incorporate various terdentate chelates as capping ligands, to allow a double control of the electronic properties of each subcomplex and of the ensemble: via the terminal ligand or through the bridging fragment. Electronic coupling was studied from the intervalence transitions observed in several bimetallic ruthenium complexes of the bis-(cyclometalated) type differing by the substitution of a nitrogen atom by carbon in the terminal terpyridyl unit. The largest metal-metal interaction was found in complexes for which the terminal complexing unit is of the 1,3-di-2-pyridylbenzene type, i.e., with the carbon atom located on the metal-metal C-2 axis of the molecule. Investigations of the mechanism of interaction by extended Huckel calculations showed that the replacement of nitrogen by carbon raises the filled ligand levels, increasing the mixing with ligand orbitals and thus the metal-metal coupling. Finally, the intervalence transition was still observed for a bridging ligand containing three phenylene units as spacers, corresponding to a 24-Angstrom metal-metal distance.
Resumo:
SEMAINE has created a large audiovisual database as a part of an iterative approach to building Sensitive Artificial Listener (SAL) agents that can engage a person in a sustained, emotionally colored conversation. Data used to build the agents came from interactions between users and an operator simulating a SAL agent, in different configurations: Solid SAL (designed so that operators displayed an appropriate nonverbal behavior) and Semi-automatic SAL (designed so that users' experience approximated interacting with a machine). We then recorded user interactions with the developed system, Automatic SAL, comparing the most communicatively competent version to versions with reduced nonverbal skills. High quality recording was provided by five high-resolution, high-framerate cameras, and four microphones, recorded synchronously. Recordings total 150 participants, for a total of 959 conversations with individual SAL characters, lasting approximately 5 minutes each. Solid SAL recordings are transcribed and extensively annotated: 6-8 raters per clip traced five affective dimensions and 27 associated categories. Other scenarios are labeled on the same pattern, but less fully. Additional information includes FACS annotation on selected extracts, identification of laughs, nods, and shakes, and measures of user engagement with the automatic system. The material is available through a web-accessible database. © 2010-2012 IEEE.
Resumo:
New routes for the preparation of highly active TiO2-supported Cu and CuZn catalysts have been developed for C-O coupling reactions. Slurries of a titania precursor were dip-coated onto glass beads to obtain either structured mesoporous or non-porous titania thin films. The Cu and CuZn nanoparticles, synthesized using a reduction by solvent method, were deposited onto calcined films to obtain a Cu loading of 2 wt%. The catalysts were characterized by inductively coupled plasma (ICP) spectroscopy, temperature-programmed oxidation/reduction (TPO/TPR) techniques, Cu-63 nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy (S/TEM-EDX) and X-ray photo-electron spectroscopy (XPS). The activity and stability of the catalysts obtained have been studied in the C-O Ullmann coupling of 4-chloropyridine and potassium phenolate. The titania-supported nanoparticles retained catalyst activity for up to 12 h. However, catalyst deactivation was observed for longer operation times due to oxidation of the Cu nanoparticles. The oxidation rate could be significantly reduced over the CuZn/TiO2 catalytic films due to the presence of Zn. The 4-phenoxypyridine yield was 64% on the Cu/nonporous TiO2 at 120 degrees C. The highest product yield of 84% was obtained on the Cu/mesoporous TiO2 at 140 degrees C, corresponding to an initial reaction rate of 104 mmol g(cat)(-1) s(-1). The activation energy on the Cu/mesoporous TiO2 catalyst was found to be (144 +/- 5) kJ mol(-1), which is close to the value obtained for the reaction over unsupported CuZn nanoparticles (123 +/- 3 kJ mol(-1)) and almost twice the value observed over the catalysts deposited onto the non-porous TiO2 support (75 +/- 2 kJ mol(-1)).
Resumo:
The bacterium Coxiella burnetii, which has a wide host range, causes Q fever. Infection with C burnetii can cause abortions, stillbirth, and the delivery of weak offspring in ruminants. Coxiella burnetii infection is zoonotic, and in human beings it can cause chronic, potentially fatal disease. Real-time polymerase chain reaction (PCR) is increasingly being used to detect the organism and to aid in diagnosis both in human and animal cases. Many different real-time PCR methods, which target different genes, have been described. To assess the comparability of the C. burnetii real-time PCR assays in use in different European laboratories, a panel of nucleic acid extracts was dispatched to 7 separate testing centers. The testing centers included laboratories from both human and animal health agencies. Each laboratory tested the samples using their in-house real-time PCR methods. The results of this comparison show that the most common target gene for real-time PCR assays is the IS1111 repeat element that is present in multiple copies in the C. burnetii genome. Many laboratories also use additional real-time PCR tests that target single-copy genes. The results of the current study demonstrate that the assays in use in the different laboratories are comparable, with general agreement of results for the panel of samples.