206 resultados para Reactivity. eng


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of surface hydrogenation reactivity is a prevailing issue in chemistry and vital to the rational design of future catalysts. In this density-functional theory study, we address hydrogenation reactivity by examining the reaction pathways for N+H -> NH and NH+H -> NH2 over the close-packed surfaces of the 4d transition metals from Zr-Pd. It is found that the minimum-energy reaction pathway is dictated by the ease with which H can relocate between hollow-site and top-site adsorption geometries. A transition state where H is close to a top site reduces the instability associated with bond sharing of metal atoms by H and N (NH) (bonding competition). However, if the energy difference between hollow-site and top-site adsorption energies (Delta E-H) is large this type of transition state is unfavorable. Thus we have determined that hydrogenation reactivity is primarily controlled by the potential-energy surface of H on the metal, which is approximated by Delta E-H, and that the strength of N (NH) chemisorption energy is of less importance. Delta E-H has also enabled us to make predictions regarding the structure sensitivity of these reactions. Furthermore, we have found that the degree of bonding competition at the transition state is responsible for the trend in reaction barriers (E-a) across the transition series. When this effect is quantified a very good linear correlation is found with E-a. In addition, we find that when considering a particular type of reaction pathway, a good linear correlation is found between the destabilizing effects of bonding competition at the transition state and the strength of the forming N-H (HN-H) bond. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO oxidation on PtO2(110) has been studied using density functional theory calculations. Four possible reaction mechanisms were investigated and the most feasible one is the following: (i) the O at the bridge site of PtO2(110) reacts with CO on the coordinatively unsaturated site (CUS) with a negligible barrier; (ii) O-2 adsorbs on the bridge site and then interacts with CO on the CUS to form an OO-CO complex; (iii) the bond of O-OCO breaks to produce CO2 with a small barrier (0.01 eV). The CO oxidation mechanisms on metals and metal oxides are rationalized by a simple model: The O-surface bonding determines the reactivity on surfaces; it also determines whether the atomic or molecular mechanism is preferred. The reactivity on metal oxides is further found to be related to the 3rd ionization energy of the metal atom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The metabolism of hydrogen (H-2 2H(+) + 2e(-)) constitutes a central process in the global biological energy cycle. Among all the enzymes that can mediate this process, Fe-only hydrogenases are unique in their particular high reactivity. Recently, some important progresses have been achieved. Following our previous paper [Z.-P. Liu and P. Hu, J. Am. Chem. Soc. 124, 5175 (2002)] that characterizes the individual redox state of the active site of Fe-only hydrogenase, in this work we have determined the feasible reaction pathways and energetics for the H-2 metabolism on the active site of Fe-only hydrogenases, using density functional theory. We show that H-2 metabolism possesses very low reaction barriers and a proximal base from a nearby protein plays an important role in H-2 metabolism. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alloying metals is often used as an effective way to enhance the reactivity of surfaces. Aiming to shed light on the effect of alloying on reaction mechanisms, we carry out a comparative study of CO oxidation on Cu3Pt(111), Pt(111), and Cu(111) by means of density functional theory calculations. Alloying effects on the bonding sites and bonding energies of adsorbates, and the reaction pathways are investigated. It is shown that CO preferentially adsorbs on an atop site of Pt and O preferentially adsorbs on a fcc hollow site of three Cu atoms on Cu3Pt(111). It is also found that the adsorption energies of CO (or O-a) decreases on Pt (or Cu) on the alloy surface with respect to those on pure metals. More importantly, having identified the transition states for CO oxidation on those three surfaces, we found an interesting trend for the reaction barrier on the three surfaces. Similar to the adsorption energies, the reaction barrier on Cu3Pt possesses an intermediate value of those on pure Pt and Cu metals. The physical origin of these results has been analyzed in detail. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature of the surface species formed at the surface of 2 wt.% Pt/CeO2 catalyst during the forward water-gas-shift (WGS, CO + H2O -> CO2 + H-2) and the reverse reaction (RWGS) were essentially identical. More, the surface concentration of formate, carbonate and carbonyl species was similar in each case. The presence of well-resolved IR bands allowed an unequivocal relative quantitative analysis of each species, avoiding the use of the carboxylate stretching region (1600-1200 cm(-1)). However, the quantitative analysis in the case of an isotopic study was complicated due to the overlapping of the various isotope bands, yet this problem could be overcome by integrating the high-wavenumber part of the bands. The reactivity of the surface species formed under RWGS conditions was followed under two different gaseous streams. Firstly, the reactivity of these intermediates were followed under an inert gas (i.e., At), in which case carbonates were essentially stable and less reactive than formates. Secondly, the reactivity of the same surface species was followed when switching to the corresponding C-13-labelled feed (i.e., (CO2)-C-13 + H-2), in which case carbonates were exchanged significantly faster than formates. While carbonates species have been reported as reaction intermediate under reaction conditions, the increased stability or surface poisoning by these carbonates in the absence of reaction mixture was highlighted. Ultimately, this work re-emphasises the need to use steady-state conditions if the true operando reactivity of the adsorbates and structure of the solid are to be determined. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tendency for contractions of muscles in the upper limb to give rise to increases in the excitability of corticospinal projections to the homologous muscles of the opposite limb is well known. Although the suppression of this tendency is integral to tasks of daily living, its exploitation may prove to be critical in the rehabilitation of acquired hemiplegias. Transcranial direct current (DC) stimulation induces changes in cortical excitability that outlast the period of application. We present evidence that changes in the reactivity of the corticospinal pathway induced by DC stimulation of the motor cortex interact systematically with those brought about by contraction of the muscles of the ipsilateral limb. During the application of flexion torques (up to 50% of maximum) applied at the left wrist, motor evoked potentials (MEPs) were evoked in the quiescent muscles of the right arm by magnetic stimulation of the left motor cortex (M1). The MEPs were obtained prior to and following 10 min of anodal, cathodal or sham DC stimulation of left M1. Cathodal stimulation counteracted increases in the crossed-facilitation of projections to the (right) wrist flexors that otherwise occurred as a result of repeated flexion contractions at the left wrist. In addition, cathodal stimulation markedly decreased the excitability of corticospinal projections to the wrist extensors of the right limb. Thus changes in corticospinal excitability induced by DC stimulation can be shaped (i.e. differentiated by muscle group) by focal contractions of muscles in the limb ipsilateral to the site of stimulation. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionic liquids have been used to support a range of magnesium-and copper-based bis(oxazoline) complexes for the enantioselective Diels-Alder reaction between N-acryloyloxazolidinone and cyclopentadiene. Compared with reaction performed in dichloromethane or diethyl ether, an enhancement in ee is observed with a large increase in reaction rate. In addition, for non-sterically hindered bis(oxazoline) ligands, that is, phenyl functionalised ligands, a reversal in configuration is found in the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethanesulfonyl)imide], compared with molecular solvents. Supported ionic liquid phase catalysts have also been developed using surface-modified silica which show good reactivity and enantioselectivity for the case of the magnesium-based bis(oxazoline) complexes. Poor ees and conversion were observed for the analogous copper-based systems. Some drop in ee was found on supporting the catalyst due a drop in the rate of reaction and, therefore, an increase in the contribution from the uncatalysed a chiral reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Okadaic acid (OA) and structurally related toxins dinophysistoxin-1 (DTX-1), and DTX-2, are lipophilic marine biotoxins. The current reference method for the analysis of these toxins is the mouse bioassay (MBA). This method is under increasing criticism both from an ethical point of view and because of its limited sensitivity and specificity. Alternative replacement methods must be rapid, robust, cost effective, specific and sensitive. Although published immuno-based detection techniques have good sensitivities, they are restricted in their use because of their inability to: (i) detect all of the OA toxins that contribute to contamination; and (ii) factor in the relative toxicities of each contaminant. Monoclonal antibodies (MAbs) were produced to OA and an automated biosensor screening assay developed and compared with ELISA techniques. The screening assay was designed to increase the probability of identifying a MAb capable of detecting all OA toxins. The result was the generation of a unique MAb which not only cross-reacted with both DTX-1 and DTX-2 but had a cross-reactivity profile in buffer that reflected exactly the intrinsic toxic potency of the OA group of toxins. Preliminary matrix studies reflected these results. This antibody is an excellent candidate for the development of a range of functional immunochemical-based detection assays for this group of toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coordination of olefins to square-planar Pd(II) and Pt(II) complexes containing 2,9-dimethylphenanthroline (L1) often involves a change of color associated with a change of geometry at the metal center. In order to obtain suitable colorimetric detectors for ethylene gas, a series of new Pd(II) and Pt(II) compounds with a range of 2,9-disubstituted phenanthroline ligands [2,9-di-n-butyl-1,10-phenanthroline (L-2), 2,9-di-s-butyl-1,10-phenanthroline (L3), 2,9-diphenyl-1,10-phenanthroline (L4), and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproine, L5)] have been prepared and their reactivity toward ethylene investigated both in solution and after depositing the detector compounds on a variety of solid supports. The Pd(II) complex [PdCl2(L2)] supported on silica undergoes a clear color change upon exposure to ethylene, while remaining stable toward air and water, and forms the basis for new simple colorimetric detectors with potential applications in ethylene pipe-leak detection and the monitoring of fruit ripening. Encouragingly, the detector is able to discriminate between fruit at different stages of ripening. The response of the detector to other volatiles was also examined, and specific color changes were also observed upon exposure to aromatic acetylenes. The crystal structures of four new derivatives, including the ethylene-Pt(II) complex [PtCl2(C2H4)(L2)], are also described.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Ru/SiO2 catalyst was investigated for the liquid-phase hydrogenation of butan-2-one to butan-2-ol with water as a medium. Although excellent reactivity was observed, a gradual deactivation of the catalyst was found on recycle of the catalyst. The spent catalyst was characterized by using XRD, XPS, TEM, TPR, CO chemisorption, FTIR and ICP analyses. Formation of Ru(OH)(x) surface species is proposed to be the main cause of catalyst deactivation with no significant Ru leaching into the reaction mixture. Following catalyst regeneration, up to 85% of the initial catalytic activity could be recovered successfully. Moreover, adsorption of secondary aliphatic alcohols on the catalyst was found to significantly reduce the formation of Ru(OH)(x) during the reaction, thus protecting the catalyst from deactivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eng-genes concept involves the use of fundamental known system functions as activation functions in a neural model to create a 'grey-box' neural network. One of the main issues in eng-genes modelling is to produce a parsimonious model given a model construction criterion. The challenges are that (1) the eng-genes model in most cases is a heterogenous network consisting of more than one type of nonlinear basis functions, and each basis function may have different set of parameters to be optimised; (2) the number of hidden nodes has to be chosen based on a model selection criterion. This is a mixed integer hard problem and this paper investigates the use of a forward selection algorithm to optimise both the network structure and the parameters of the system-derived activation functions. Results are included from case studies performed on a simulated continuously stirred tank reactor process, and using actual data from a pH neutralisation plant. The resulting eng-genes networks demonstrate superior simulation performance and transparency over a range of network sizes when compared to conventional neural models. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poly(ethylene glycol)-based aqueous biphasic systems (PEG-ABSs) have been investigated as tunable reaction media, in the example presented here, to control the oxidation of cyclohexene to adipic acid with hydrogen peroxide. The production of adipic acid was found to increase from the monophasic to the biphasic regimes, was greatest at short tie-line lengths (close to the system's critical point), and demonstrates how control of the ABS media, through changes in system composition, PEG, salt, and tie-line length, can be used to readily tune and control reactivity and product isolation in these aqueous biphasic reactive extraction systems. Challenges in using this system, including possible oxidation reactions of the PEG-OH end groups, are also discussed.