87 resultados para Q-switching
Resumo:
The performance of NOx storage and reduction over 1.5 wt% Pt/20 wt% KNO3/K2Ti8O17 and 1.5 wt% Pt/K2Ti8O17 catalysts has been investigated using combined fast transient kinetic switching and isotopically labelled (NO)-N-15 at 350 degrees C. The evolution of product N-2 has revealed two significant peaks during 60 s lean/1.3 s rich switches. It also found that the presence of CO2 in the feed affects the release of N-2 in the second peak. Regardless of the presence/absence of water in the feed, only one peak of N-2 was observed in the absence of CO2. Gas-phase NH3 was not observed in any of the experiments. However, in the presence of CO2 the results obtained from in situ DRIFTS-MS analysis showed that isocyanate species are formed and stored during the rich cycles, probably from the reaction between NOx and CO, in which CO was formed via the reverse water-gas shift reaction.
Resumo:
We analyze the performance of dual-hop two-way amplify-and-forward relaying in the presence of in-phase and quadrature-phase imbalance (IQI) at the relay node. In particular, two power allocation schemes, namely, fixed power allocation and instantaneous power allocation, are proposed to improve the system reliability and robustness against IQI under a total transmit power constraint. For each proposed scheme, the outage probability is investigated over independent, non-identically distributed Nakagami- m fading channels, and exact closed-form expressions and bounds are derived. Our theoretical analysis indicates that, without IQI compensation, IQI can create fundamental performance limits on two-way relaying. However, these limits can be avoided by performing IQI compensation at source nodes. Compared with the equal power allocation scheme, our numerical results show that the two proposed power allocation schemes can significantly improve the outage performance, thus reducing the IQI effects, particularly when the total power budget is large.
Resumo:
In this paper, weconsider switch-and-stay combining (SSC) in two-way relay systems with two amplify-and-forward relays, one of which is activated to assist the information exchange between the two sources. The system operates in either analog network coding (ANC) protocol where the communication is only achieved with the help of the active relay or timedivision broadcast (TDBC) protocol where the direct link between two sources can be utilized to exploit more diversity gain. In both cases, we study the outage probability and bit error rate (BER) for Rayleigh fading channels. In particular, we derive closed-form lower bounds for the outage probability and the average BER, which remain tight for different fading conditions. We also present asymptotic analysis for both the outage probability and the average BER at high signalto-noise ratio. It is shown that SSC can achieve the full diversity order in two-way relay systems for both ANC and TDBC protocols with proper switching thresholds. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
Using fMRI, we conducted two types of property generation task that involved language switching, with early bilingual speakers of Korean and Chinese. The first is a more conventional task in which a single language (L1 or L2) was used within each trial, but switched randomly from trial to trial. The other consists of a novel experimental design where language switching happens within each trial, alternating in the direction of the L1/L2 translation required. Our findings support a recently introduced cognitive model, the 'hodological' view of language switching proposed by Moritz-Gasser and Duffau. The nodes of a distributed neural network that this model proposes are consistent with the informative regions that we extracted in this study, using both GLM methods and Multivariate Pattern Analyses: the supplementary motor area, caudate, supramarginal gyrus and fusiform gyrus and other cortical areas.
Resumo:
A "top-down" approach using a-beam lithography and a "bottom-up" one using self-assembly methods were used to fabricate ferroelelectric Pb(Zr,Ti)O-3, SrBi2Ta2O9 and BaTiO3 nanostructures with lateral sizes in the range of 30 nm to 100 nm. Switching of single sub-100 nm cells was achieved and piezoelectric hysteresis loops were recorded using a scanning force microscope working in piezoresponse mode. The piezoelectricity and its hysteresis acquired for 100 nm PZT cells demonstrate that a further decrease in lateral size under 100 nm appears to be possible and that the size effects are not fundamentally limiting on increase density of non-volatile ferroelectric memories in the Gbit range.
Resumo:
Temperature-dependent switching of paramagnetism of a cobalt(ii) complex is observed in an ionic liquid solution. Paramagnetic and thermochromic switching occur simultaneously due to a reversible change in coordination. This reversible switching is possible in the ionic liquid solution, which enables mobility of thiocyanate anions by remaining mobile at low temperatures and acts as an anion reservoir.
Resumo:
In the last decade, many side channel attacks have been published in academic literature detailing how to efficiently extract secret keys by mounting various attacks, such as differential or correlation power analysis, on cryptosystems. Among the most efficient and widely utilized leakage models involved in these attacks are the Hamming weight and distance models which give a simple, yet effective, approximation of the power consumption for many real-world systems. These leakage models reflect the number of bits switching, which is assumed proportional to the power consumption. However, the actual power consumption changing in the circuits is unlikely to be directly of that form. We, therefore, propose a non-linear leakage model by mapping the existing leakage model via a transform function, by which the changing power consumption is depicted more precisely, hence the attack efficiency can be improved considerably. This has the advantage of utilising a non-linear power model while retaining the simplicity of the Hamming weight or distance models. A modified attack architecture is then suggested to yield the correct key efficiently in practice. Finally, an empirical comparison of the attack results is presented.
Resumo:
In this paper, we study a two-phase underlay cognitive relay network, where there exists an eavesdropper who can overhear the message. The secure data transmission from the secondary source to secondary destination is assisted by two decode-and-forward (DF) relays. Although the traditional opportunistic relaying technique can choose one relay to provide the best secure performance, it needs to continuously have the channel state information (CSI) of both relays, and may result in a high relay switching rate. To overcome these limitations, a secure switch-and-stay combining (SSSC) protocol is proposed where only one out of the two relays is activated to assist the secure data transmission, and the secure relay switching occurs when the relay cannot support the secure communication any longer. This security switching is assisted by either instantaneous or statistical eavesdropping CSI. For these two cases, we study the system secure performance of SSSC protocol, by deriving the analytical secrecy outage probability as well as an asymptotic expression for the high main-to-eavesdropper ratio (MER) region. We show that SSSC can substantially reduce the system complexity while achieving or approaching the full diversity order of opportunistic relaying in the presence of the instantaneous or statistical eavesdropping CSI.
Resumo:
We analyze the performance of amplify-and-forward dual-hop relaying systems in the presence of in-phase and quadrature-phase imbalance (IQI) at the relay node. In particular, an exact analytical expression for and tight lower bounds on the outage probability are derived over independent, non-identically distributed Nakagami-m fading channels. Moreover, tractable upper and lower bounds on the ergodic capacity are presented at arbitrary signal-to-noise ratios (SNRs). Some special cases of practical interest (e.g., Rayleigh and Nakagami-0.5 fading) are also studied. An asymptotic analysis is performed in the high SNR regime, where we observe that IQI results in a ceiling effect on the signal-to-interference-plus-noise ratio (SINR), which depends only on the level of I/Q impairments, i.e., the joint image rejection ratio. Finally, the optimal I/Q amplitude and phase mismatch parameters are provided for maximizing the SINR ceiling, thus improving the system performance. An interesting observation is that, under a fixed total phase mismatch constraint, it is optimal to have the same level of transmitter (TX) and receiver (RX) phase mismatch at the relay node, while the optimal values for the TX and RX amplitude mismatch should be inversely proportional to each other.
Resumo:
Research findings suggest that switching between competing response sets can be resource demanding. The current study focused on concurrent health-relevant physiological effects of task switching by assessing cardiovascular response at varying levels of switch frequency. The participants performed a response-switching task at three different levels of response set switching frequency (low, medium and high) while measurements of blood pressure and heart rate were taken. One group was exposed to response-switching frequency conditions in the order low → medium → high, while the other group was exposed to the same task conditions in the reverse order (i.e. high → medium → low). The results showed that the participants in the low → medium → high switch frequency group recovered faster from initially heightened systolic blood pressure when compared with participants in the high → medium → low group. It is concluded that the results point to a physiological "carry over" effect associated with beginning a task at rapid response switching frequency levels, and suggest the importance of habituation to task demands as a means of offsetting potentially unhealthy levels of reactivity. Implications for modern work environments are discussed.