218 resultados para Oxygen Heterocyc|es
Resumo:
Small mammals that inhabit arid and temporally unproductive environments use several methods to conserve energy. Here, we investigate the energetic role of sun basking in striped mice Rhabdomys pumilio from the Succulent Karoo desert in South Africa. We observed mice in front of their nests for 140 h and recorded the time they spent basking during the non-breeding (dry) and the breeding (wet) seasons. We measured temperature changes in model mice to provide an indication of the heat that can be absorbed from the sun. Finally, we measured the oxygen consumption (circle dot O-2) of mice at their basking sites in the field both in the sun and in the shade. This was accomplished using a portable respirometry system with a metabolism chamber, which could be placed in and out of the sun. Observations showed that mice basked more often during the non-breeding than during the breeding season. During the former season, mice spent an average of 11.9 +/- 1.1 min (se) in the morning and 5.5 +/- 0.5 min in the afternoon per day basking. Within the metabolism chamber, circle dot O-2 decreased when the animal was in the sunshine compared with the shade. This effect occurred independent of the ambient temperature (T-a), indicating that a significant amount of radiant energy was absorbed from the sun. Basking may be an alternative to other energy-acquisition behaviours, such as foraging, which might be particularly useful at times when food is scarce.
Resumo:
Introduction: The most effective treatment for high altitude sickness is prompt descent. However, rapid descent is sometimes impossible and alternative solutions are desirable. Supplemental oxygen at ambient pressure and hyperbaric oxygen in a hyperbaric tent have both been demonstrated to improve symptoms and increase arterial oxygenation (SaO(2)) in those with high altitude sickness; however, their use in combination has not previously been described in a controlled study. Methods and Results: In this feasibility study, the SaO(2) of six healthy, well-acclimatized participants rose from 76.5 to 97.5% at 4900 m and 72.5 to 96.0% at 5700 m following the administration of oxygen via a nasal demand circuit (33 ml of oxygen per pulse) inside a hyperbaric tent (107 mmHg above ambient barometric pressure) (p
Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications
Resumo:
Porous carbon aerogels are prepared by polycondensation of resorcinol (R) and formaldehyde (F)catalyzed by sodium carbonate (C) followed by carbonization of the resultant aerogels at 800? in an inert atmosphere. The porous texture of the carbons has been adjusted by the change of the molar ratio of resorcinol to catalyst (R/C) in the gel precursors in the range of 100 to 500. The porous structure of the aerogels and carbon aerogels are characterized by N2 adsorption-desorption measurements at 77 K. It is found that total pore volume and average pore diameter of the carbons increase with increase in the R/C ratio of the gel precursors.The prepared carbon aerogels are used as active materials in fabrication of composite carbon electrodes. The electrochemical performance of the electrodes has been tested by using them as cathodes in a Li/O2 cell. Through the galvanostatic charge/discharge measurements, it is found that with an increase of R/C ratio, the specific capacity of the Li/O2 cell fabricated from the carbon aerogels increases from 716 to 2077 charge/discharge cycles indicate that the carbon samples possess excellent stability on cycling.