101 resultados para Monocyte chemotactic protein-1


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Studies have suggested a link between lycopene and insulin-like growth factor-1 ( IGF-1). The aim of this study was to test the effect of lycopene supplementation on IGF-1 and binding protein-3 ( IGFBP-3) status in healthy male volunteers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Epac1 and Epac2 bind cAMP and mediate cAMP-dependent activation of Rap1. cAMP is produced in neutrophils in response to many chemoattractants. This second messenger plays a key role in the regulation of the functions of neutrophils. However, it is still not known whether Epacs are expressed in human neutrophils. We found that stimulation of PLB-985 cells differentiated into neutrophil-like cells, human neutrophils with 8CPT-2Me-cAMP (a selective activator of Epacs), or FK (a diterpene that augments the intracellular level of cAMP) led to GTP-loading of Rap1. Epac1 mRNA was expressed in UND and DF PLB-985 cells, but Epac1 protein was only detected in DF PLB-985 cells. In human neutrophils, the Epac1 transcript was present, and Epac1 protein could be detected by Western blot analysis if the cells had been treated with the serine protease inhibitor PMSF. FK induced adhesion of PLB-985 cells and human neutrophils on fibrinogen, a ligand for beta 2 integrins. Interestingly, in DF PLB-985 cells, but not in human neutrophils, 8CPT-2Me-cAMP induced beta 2 integrin-dependent adhesion. The failure of 8CPT-2Me-cAMP to induce beta 2 integrin-dependent human neutrophil adhesion could be explained by the fact that this compound did not induce a switch of the beta 2 integrins from a low-affinity to a high-affinity ligand-binding conformation. We concluded that Epac1 is expressed in human neutrophils and is involved in cAMP-dependent regulation of Rap1. However, the loading of GTP on Rap1 per se is not sufficient to promote activation of beta 2 integrins. J. Leukoc. Biol. 90: 741-749; 2011.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Obese AT (adipose tissue) exhibits increased macrophage number. Pro-inflammatory CD16+ peripheral monocyte numbers are also reported to increase with obesity. The present study was undertaken to simultaneously investigate obesity-associated changes in CD16+ monocytes and ATMs (AT macrophages). In addition, a pilot randomized placebo controlled trial using the PPAR (peroxisome-proliferator-activated receptor) agonists, pioglitazone and fenofibrate was performed to determine their effects on CD14+/CD16+ monocytes, ATM and cardiometabolic and adipose dysfunction indices. Obese glucose-tolerant men (n=28) were randomized to placebo, pioglitazone (30 mg/day) and fenofibrate (160 mg/day) for 12 weeks. A blood sample was taken to assess levels of serum inflammatory markers and circulating CD14+/CD16+ monocyte levels via flow cytometry. A subcutaneous AT biopsy was performed to determine adipocyte cell surface and ATM number, the latter was determined via assessment of CD68 expression by IHC (immunohistochemistry) and real-time PCR. Subcutaneous AT mRNA expression of CEBPß (CCAAT enhancer-binding protein ß), SREBP1c (sterol-regulatory-element-binding protein 1c), PPAR?2, IRS-1 (insulin receptor substrate-1), GLUT4 (glucose transporter type 4) and TNFa (tumour necrosis factor a) were also assessed. Comparisons were made between obese and lean controls (n=16) at baseline, and pre- and post-PPAR agonist treatment. Obese individuals had significantly increased adipocyte cell surface, percentage CD14+/CD16+ monocyte numbers and ATM number (all P=0.0001). Additionally, serum TNF-a levels were significantly elevated (P=0.017) and adiponectin levels reduced (total: P=0.0001; high: P=0.022) with obesity. ATM number and percentage of CD14+/CD16+ monocytes correlated significantly (P=0.05). Pioglitazone improved adiponectin levels significantly (P=0.0001), and resulted in the further significant enlargement of adipocytes (P=0.05), without effect on the percentage CD14+/CD16+ or ATM number. Pioglitazone treatment also significantly increased subcutaneous AT expression of CEBPß mRNA. The finding that improvements in obesity-associated insulin resistance following pioglitazone were associated with increased adipocyte cell surface and systemic adiponectin levels, supports the centrality of AT to the cardiometabolic derangement underlying the development of T2D (Type 2 diabetes) and CVD (cardiovascular disease).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mucosally-administered vaccine strategies are widely investigated as a promising means of preventing HIV infection. This study describes the development of liposomal gel formulations, and novel lyophilised variants, comprising HIV-1 envelope glycoprotein, CN54gp140, encapsulated within neutral, positively charged or negatively charged liposomes. The CN54gp140 liposomes were evaluated for mean vesicle diameter, polydispersity, morphology, zeta potential and antigen encapsulation efficiency before being incorporated into hydroxyethyl cellulose (HEC) aqueous gel and subsequently lyophilised to produce a rod-shaped solid dosage form for practical vaginal application. The lyophilised liposome-HEC rods were evaluated for moisture content and redispersibility in simulated vaginal fluid. Since these rods are designed to revert to gel form following intravaginal application, mucoadhesive, mechanical (compressibility and hardness) and rheological properties of the reformed gels were evaluated. The liposomes exhibited good encapsulation efficiency and the gels demonstrated suitable mucoadhesive strength. The freeze-dried liposome-HEC formulations represent a novel formulation strategy that could offer potential as stable and practical dosage form.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To use protein kinase C (PKC) d-knockout mice to investigate the role of PKCd in lesion development and to understand the underlying mechanism of the vascular disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Voltage-gated sodium channels (VGSCs) play a crucial role in epilepsy. The expressions of different VGSCs subtypes are varied in diverse animal models of epilepsy that may reflect their multiple phenotypes or the complexity of the mechanisms of epilepsy. In a previous study, we reported that NaV1.1 and NaV1.3 were up-regulated in the hippocampus of the spontaneously epileptic rat (SER). In this study, we further analyzed both the expression and distribution of the typical VGSC subtypes NaV1.1, NaV1.2, NaV1.3 and NaV1.6 in the hippocampus and in the cortex of the temporal lobe of two genetic epileptic animal models: the SER and the tremor rat (TRM). The expressions of calmodulin (CaM) and calmodulin-dependent protein kinase II (CaMKII) were also analyzed with the purpose of assessing the effect of the CaM/CaMKII pathway in these two models of epilepsy. Increased expression of the four VGSC subtypes and CaM, accompanied by a decrease in CaMKII was observed in the hippocampus of both the SERs and the TRM rats. However, the changes observed in the expression of VGSC subtypes and CaM were decreased with an elevated CaMKII in the cortex of their temporal lobes. Double-labeled immunofluorescence data suggested that in SERs and TRM rats, the four subtypes of the VGSC proteins were present throughout the CA1, CA3 and dentate gyrus regions of the hippocampus and temporal lobe cortex and these were co-localized in neurons with CaM. These data represent the first evidence of abnormal changes in expression of four VGSC subtypes (NaV1.1, NaV1.2, NaV1.3 and NaV1.6) and CaM/CaMKII in the hippocampus and temporal lobe cortex of SERs and TRM rats. These changes may be involved in the generation of epileptiform activity and underlie the observed seizure phenotype in these rat models of genetic epilepsy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 65-kD microtubule-associated protein (MAP65) family is a family of plant microtubule-bundling proteins. Functional analysis is complicated by the heterogeneity within this family: there are nine MAP65 genes in Arabidopsis thaliana, AtMAP65-1 to AtMAP65-9. To begin the functional dissection of the Arabidopsis MAP65 proteins, we have concentrated on a single isoform, AtMAP65-1, and examined its effect on the dynamics of mammalian microtubules. We show that recombinant AtMAP65-1 does not promote polymerization and does not stabilize microtubules against cold-induced microtubule depolymerization. However, we show that it does induce microtubule bundling in vitro and that this protein forms 25-nm cross-bridges between microtubules. We further demonstrate that the microtubule binding region resides in the C-terminal half of the protein and that Ala409 and Ala420 are essential for the interaction with microtubules. Ala420 is a conserved amino acid in the AtMAP65 family and is mutated to Val in the cytokinesis-defective mutant pleiade-4 of the AtMAP65-3/PLEIADE gene. We show that AtMAP65-1 can form dimers and that a region in the N terminus is responsible for this activity. Neither the microtubule binding region nor the dimerization region alone could induce microtubule bundling, strongly suggesting that dimerization is necessary to produce the microtubule cross-bridges. In vivo, AtMAP65-1 is ubiquitously expressed both during the cell cycle and in all plant organs and tissues with the exception of anthers and petals. Moreover, using an antiserum raised to AtMAP65-1, we show that AtMAP65-1 binds microtubules at specific stages of the cell cycle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the associations of apolipoprotein C-III (apoCIII) protein and apoCIII gene variation with microvascular disease complications in Type 1 diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Serum apolipoprotein C-III (apoCIII) concentration and apoCIII gene polymorphisms have been shown to be a risk factor for cardiovascular disease; however, the underlying mechanisms remain unclear. In addition, no studies have been performed that address these issues in type 1 diabetes. The current study investigated apoCIII protein and apoCIII gene variation in a normotriglyceridemic (82 +/- 57 mg/dL) population of patients with type 1 diabetes, the Diabetes Control and Complications Trial/Epidemiology of Diabetes Intervention and Complications (DCCT/EDIC) cohort. Blood samples were obtained in 409 patients after an overnight fast. Serum apoCIII concentration was highly correlated with multiple changes in lipids and lipoproteins that resulted in an adverse cardiovascular disease risk profile. Higher apoCIII concentrations were associated (P <.0001) with increased triglycerides (r = 0.78), total (r = 0.61) and low-density lipoprotein (LDL) (r = 0.40) cholesterol, apoA-I (r = 0.26), and apoB (r = 0.50), and these relationships persisted after controlling for age, gender, body mass index (BMI), and hemoglobin A1c (HbA1c). Nuclear magnetic resonance (NMR) lipoprotein subclass analyses demonstrated that apoCIII was correlated with an increase in very-low-density lipoprotein (VLDL) subclasses (P = .0001). There also was a highly significant positive relationship between serum apoCIII concentration and the LDL particle concentration in both men (r = 0.49, P = .001) and women (r = 0.40, P = .001), and a highly significant negative relationship between serum apoCIII levels and average LDL particle size in both men (r = -0.37, P = .001) and women (r = -0.22, P = .001) due primarily to an augmentation in the small L1 subclass (r = 0.42, P = .0001). Neither the T(-455) --> C polymorphism affecting an insulin response element in the apoCIII gene promoter nor a SacI polymorphism in the 3'UTR were associated with any alterations in circulating apoCIII concentrations, serum lipids, apolipoprotein concentrations, lipoprotein composition, or parameters measured by NMR lipoprotein subclass analyses. In summary, elevated apoCIII concentration was associated with risk factors for cardiovascular disease in normolipidemic type 1 diabetic patients through associated changes in lipoprotein subfraction distributions, which were independent of apoCIII genotype.