80 resultados para Japiks, Gijsbert, 1603-1666.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solid-state electrochemical reactor with ceramic proton-conducting membrane has been used to study the effect of electrochemically induced hydrogen spillover on the catalytic activity of platinum during ethylene oxidation. Suitable proton-conducting electrolyte membranes (Gd-doped BaPrO 3 (BPG) and Y-doped BaZrO3 (BZY)) were fabricated. These materials were chosen because of their protonic conductivity in the operational temperature region of the reaction (400-700 °C). The BZY-based electrochemical cell was used to investigate the open-circuit voltage (OCV) dependence on H2 partial pressure with comparison being made to the theoretical OCV as predicted by the Nernst equation. Furthermore, the BZY pellets were used to study the effect of proton transfer of the catalytic activity of platinum during ethylene oxidation. The reaction was found to exhibit electrochemical promotion at 400 °C and to be electrophilic in nature, i.e. proton addition to the platinum surface resulted in an increase in reaction rate. At higher temperatures, the rate was not affected, within experimental error, by proton addition or removal. Under similar conditions, AC impedance showed that there was a large overall cell resistance at 400 °C with significantly decreased resistance at higher temperatures. It is possible that there could be a relationship between large cell resistances and the onset of electrochemical promotion in this system but there is, as yet, no conclusive evidence for this. © 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on photoluminescence, Fourier transform infrared spectroscopy, and atomic force microscopy results, a new light emitting model for porous silicon (multiple source quantum well model) is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reduction of CO2 on copper electrodes has attracted great attentions in the last decades, since it provides a sustainable approach for energy restore. During the CO2 reduction process, the electron transfer to COads is experimentally suggested to be the crucial step. In this work, we examine two possible pathways in CO activation, i.e. to generate COHads and CHOads, respectively, by performing the state-of-the-art constrained ab initio molecular dynamics simulations on the charged Cu(100) electrode under aqueous conditions, which is close to the realistic electrochemical condition. The free energy profile in the formation of COHads via the coupled proton and electron transfer is plotted. Furthermore, by Bader charge analyses, a linear relationship between C-O bond distance and the negative charge in CO fragment is unveiled. The formation of CHOads is identified to be a surface catalytic reaction, which requires the adsorption of H atom on the surface first. By comparing these two pathways, we demonstrate that kinetically the formation of COHads is more favored than that of CHOads, while CHOads is thermodynamically more stable. This work reveals that CO activation via COHads intermediate is an important pathway in electrocatalysis, which could provide some insights into CO2 electroreduction over Cu electrodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential of IR absorption and Raman spectroscopy for rapid identification of novel psychoactive substances (NPS) has been tested using a set of 221 unsorted seized samples suspected of containing NPS. Both IR and Raman spectra showed large variation between the different sub-classifications of NPS and smaller, but still distinguishable, differences between closely related compounds within the same class. In initial tests, screening the samples using spectral searching against a limited reference library allowed only 41% of the samples to be fully identified. The limiting factor in the identification was the large number of active compounds in the seized samples for which no reference vibrational data were available in the libraries rather than poor spectral quality. Therefore, when 33 of these compounds were independently identified by NMR and mass spectrometry and their spectra used to extend the libraries, the percentage of samples identified by IR and Raman screening alone increased to 76%, with only 7% of samples having no identifiable constituents. This study, which is the largest of its type ever carried out, therefore demonstrates that this approach of detecting non-matching samples and then identifying them using standard analytical methods has considerable potential in NPS screening since it allows rapid identification of the constituents of the majority of street quality samples. Only one complete feedback cycle was carried out in this study but there is clearly the potential to carry out continuous identification/updating when this system is used in operational settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selective catalytic reduction (SCR) of NOx in the presence of different reducing agents over Ag/Al2O3 prepared by wet impregnation was investigated by probing catalyst activity and using NMR relaxation time analysis to probe the strength of surface interaction of the various reducing agent species and water. The results reveal that the strength of surface interaction of the reducing agent relative to water, the latter present in engine exhausts as a fuel combustion product and, in addition, produced during the SCR reaction, plays an important role in determining catalyst performance. Reducing agents with weak strength of interaction with the catalyst surface, such as hydrocarbons, show poorer catalytic performance than reducing agents with a higher strength of interaction, such as alcohols. This is attributed to the greater ability of oxygenated species to compete with water in terms of surface interaction with the catalyst surface, hence reducing the inhibiting effect of water molecules blocking catalyst sites. The results support the observations of earlier work in that the light off-temperature and maximum NOx conversion and temperature at which that occurs are sensitive to the reducing agent present during reaction, and the proposal that improved catalyst performance is caused by increased adsorption strength of the reducing agent, relative to water, at the catalyst surface. Importantly, the NMR relaxation time analysis approach to characterising the strength of adsorption more readily describes the trends in catalytic behaviour than does a straightforward consideration of the polarity (i.e., relative permittivity) of the reducing agents studied here. In summary, this paper describes a simple approach to characterising the interaction energy of water and reducing agent so as to aid the selection of reducing agent and catalyst to be used in SCR conversions.