157 resultados para ENVELOPE FUNCTIONS
Resumo:
Ensembles of charged particles (plasmas) are a highly complex form of matter, most often modeled as a many-body system characterized by weak inter-particle interactions (electrostatic coupling). However, strongly-coupled plasma configurations have recently been produced in laboratory, either by creating ultra-cold plasmas confined in a trap or by manipulating dusty plasmas in discharge experiments. In this paper, the nonlinear aspects involved in the motion of charged dust grains in a one-dimensional plasma monolayer (crystal) are discussed. Different types of collective excitations are reviewed, and characteristics and conditions for their occurrence in dusty plasma crystals are discussed, in a quasi-continuum approximation. Dust crystals are shown to support nonlinear kink-shaped supersonic solitary longitudinal excitations, as well as modulated envelope localized modes associated with longitudinal and transverse vibrations. Furthermore, the possibility for intrinsic localized modes (ILMs) — Discrete Breathers (DBs) — to occur is investigated, from first principles. The effect of mode-coupling is also briefly considered. The relation to previous results on atomic chains, and also to experimental results on strongly-coupled dust layers in gas discharge plasmas, is briefly discussed.
Resumo:
The aim of this paper is to show that there exist infinite dimensional Banach spaces of functions that, except for 0, satisfy properties that apparently should be destroyed by the linear combination of two of them. Three of these spaces are: a Banach space of differentiable functions on Rn failing the Denjoy-Clarkson property; a Banach space of non Riemann integrable bounded functions, but with antiderivative at each point of an interval; a Banach space of infinitely differentiable functions that vanish at infinity and are not the Fourier transform of any Lebesgue integrable function.
Resumo:
Vaccine-mediated prevention of primary HIV-1 infection at the heterosexual mucosal portal of entry may be facilitated by highly optimised formulations or drug delivery devices for intravaginal (i.vag) immunization. Previously we described hydroxyethylcellulose (HEC)-based rheologically structured gel vehicles (RSVs) for vaginal immunization of an HIV-1 vaccine candidate, a soluble recombinant trimeric HIV-1 clade-C envelope glycoprotein designated CN54gp140. Here we investigated the efficacy of lyophilized solid dosage formulations (LSDFs) for prolonging antigen stability and as i.vag delivery modalities. LSDFs were designed and developed that upon i.vag administration they would reconstitute with the imbibing of vaginal fluid to mucoadhesive, site-retentive semi-solids. Mice were immunized with lyophilized equivalents of (i) RSVs, (ii) modified versions of the RSVs more suited to lyophilization (sodium carboxymethyl cellulose (NaCMC)-based gels) and (iii) Carbopol® gel, all containing CN54gp140. NaCMC-based LSDFs provided significantly enhanced antigen stability compared to aqueous-based RSVs. Rheological analysis indicated the NaCMC-based LSDFs would offer enhanced vaginal retention in woman compared to more conventional vaginal gel formulations. All LSDFs were well tolerated in the mouse model. Following i.vag administration, all LSDFs boosted systemic CN54gp140-specific antibody responses in sub-cutaneously primed mice. Induction of CN54gp140-specific antibody responses in the female genital tract was evident. Of all the LSDFs the fastest releasing which was lyophilized Carbopol® gel elicited immune responses comparable to buffer instillation of antigen suggesting that rather than slower sustained release, initial high burst release from the LSDFs may suffice. The boosting of specific immune responses upon i.vag administration indicates that LSDFs are viable mucosal vaccine delivery modalities promoting antigen stability and facilitating intimate exposure of CN54gp140 to the mucosal-associated lymphoid tissue of the female genital tract.
Resumo:
The nonlinear dynamics of electrostatic solitary waves in the form of localized modulated wavepackets is investigated from first principles. Electron-acoustic (EA) excitations are considered in a two-electron plasma, via a fluid formulation. The plasma, assumed to be collisionless and uniform (unmagnetized), is composed of two types of electrons (inertial cold electrons and inertialess kappa-distributed superthermal electrons) and stationary ions. By making use of a multiscale perturbation technique, a nonlinear Schrodinger equation is derived for the modulated envelope, relying on which the occurrence of modulational instability (MI) is investigated in detail. Stationary profile localized EA excitations may exist, in the form of bright solitons (envelope pulses) or dark envelopes (voids). The presence of superthermal electrons modifies the conditions for MI to occur, as well as the associated threshold and growth rate. The concentration of superthermal electrons (i.e., the deviation from a Maxwellian electron distribution) may control or even suppress MI. Furthermore, superthermality affects the characteristics of solitary envelope structures, both qualitatively (supporting one or the other type, for different.) and quantitatively, changing their characteristics (width, amplitude). The stability of bright and dark-type nonlinear structures is confirmed by numerical simulations.
Resumo:
We present an extensive set of photometric and spectroscopic data for SN 2009jf, a nearby Type Ib supernova (SN), spanning from ˜20 d before B-band maximum to 1 yr after maximum. We show that SN 2009jf is a slowly evolving and energetic stripped-envelope SN and is likely from a massive progenitor (25-30 Msun). The large progenitor's mass allows us to explain the complete hydrogen plus helium stripping without invoking the presence of a binary companion. The SN occurred close to a young cluster, in a crowded environment with ongoing star formation. The spectroscopic similarity with the He-poor Type Ic SN 2007gr suggests a common progenitor for some SNe Ib and Ic. The nebular spectra of SN 2009jf are consistent with an asymmetric explosion, with an off-centre dense core. We also find evidence that He-rich Ib SNe have a rise time longer than other stripped-envelope SNe, however confirmation of this result and further observations are needed. This paper is based on observations with several telescopes, including NTT(184.D-1151), VLT-UT1(085.D-0750,386.D-0126), NOT, WHT, TNG, PROMPT, Ekar, Calar Alto and Liverpool Telescope.
Resumo:
A new chemical model of the circumstellar envelope surrounding the carbon-rich star IRC+10216 has been developed. This model incorporates a variety of newly measured rapid neutral-neutral reactions between carbon atoms and hydrocarbons and between the radical CN and a variety of stable neutral molecules. In addition, other neutral-neutral reactions in the above two classes or involving atoms such as N or radicals such as C(2n)H have been included with large rate coefficients although they have not yet been studied in the laboratory. Unlike the interstellar case, where the inclusion of these neutral-neutral reactions destroys molecular complexity, our model results for IRC+10216 show that sufficient abundances of large hydrocarbon radicals and cyanpolyynes can be produced to explain observations. We also discuss the formation of H2CN and NH2CN, two potentially observable molecules in IRC+10216.
Resumo:
Historically, peptidergic substances (in the form of neurosecretions) were linked to moulting in nematodes. More recently, there has been a renewal of interest in nematode neurobiology, initially triggered by studies demonstrating the localization of peptide immunoreactivities to the nervous system. Here, David Brownlee, Ian Fairweather, Lindy Holden-Dye and Robert Walker will review progress on the isolation of nematode neuropeptides and efforts to unravel their physiological actions and inactivation mechanisms. Future avenues for research are suggested and the potential exploitation of peptidergic pathways in future therapeutic strategies highlighted.