86 resultados para Computational geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce a novel graph class we call universal hierarchical graphs (UHG) whose topology can be found numerously in problems representing, e.g., temporal, spacial or general process structures of systems. For this graph class we show, that we can naturally assign two probability distributions, for nodes and for edges, which lead us directly to the definition of the entropy and joint entropy and, hence, mutual information establishing an information theory for this graph class. Furthermore, we provide some results under which conditions these constraint probability distributions maximize the corresponding entropy. Also, we demonstrate that these entropic measures can be computed efficiently which is a prerequisite for every large scale practical application and show some numerical examples. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study is to compare the sensitivity of different metrics to detect differences in complexity of intensity modulated radiation therapy (IMRT) plans following upgrades, changes to planning parameters, and patient geometry. Correlations between complexity metrics are also assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:


Lip separation is one of the primary sources of inlet distortion, which can result in a loss in fan stability. High angles of incidence are one of several critical causes of lip separation. There have been many studies into inlet performance at high incidence, including the resulting distortion levels when lip separation occurs. However, the vast majority of these investigations have been carried out experimentally, with little in the way of computational results for inlet performance at high incidence. The flow topology within an inlet when lip separation has occurred is also not well understood. This work aims to demonstrate a suitable model for the prediction of inlet flows at high incidence using ANSYS CFX, looking at both the performance of the inlet and the separated flow topology within the inlet. The attenuating effect of the fan is also investigated, with particular emphasis on the flow redistribution ahead of the fan. The results show that the model used is suitable for predicting inlet performance in adverse operating conditions, showing good agreement with experimental results. In addition, the attenuation of the distortion by the fan is also captured by the numerical model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the use of the Euler equations for the generation and testing of tabular aerodynamic models for flight dynamics analysis. Maneuvers for the AGARD Standard Dynamics Model sharp leading-edge wind-tunnel geometry are considered as a test case. Wind-tunnel data is first used to validate the prediction of static and dynamic coefficients at both low and high angles, featuring complex vortical flow, with good agreement obtained at low to moderate angles of attack. Then the generation of aerodynamic tables is described based on a data fusion approach. Time-optimal maneuvers are generated based on these tables, including level flight trim, pull-ups at constant and varying incidence, and level and 90 degrees turns. The maneuver definition includes the aircraft states and also the control deflections to achieve the motion. The main point of the paper is then to assess the validity of the aerodynamic tables which were used to define the maneuvers. This is done by replaying them, including the control surface motions, through the time accurate computational fluid dynamics code. The resulting forces and moments are compared with the tabular values to assess the presence of inadequately modeled dynamic or unsteady effects. The agreement between the tables and the replay is demonstrated for slow maneuvers. Increasing rate maneuvers show discrepancies which are ascribed to vortical flow hysteresis at the higher rate motions. The framework is suitable for application to more complex viscous flow models, and is powerful for the assessment of the validity of aerodynamics models of the type currently used for studies of flight dynamics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of medical devices could be very much improved if robust tools were available for computational simulation of tissue response to the presence of the implant. Such tools require algorithms to simulate the response of tissues to mechanical and chemical stimuli. Available methodologies include those based on the principle of mechanical homeostasis, those which use continuum models to simulate biological constituents, and the cell-centred approach, which models cells as autonomous agents. In the latter approach, cell behaviour is governed by rules based on the state of the local environment around the cell; and informed by experiment. Tissue growth and differentiation requires simulating many of these cells together. In this paper, the methodology and applications of cell-centred techniques-with particular application to mechanobiology-are reviewed, and a cell-centred model of tissue formation in the lumen of an artery in response to the deployment of a stent is presented. The method is capable of capturing some of the most important aspects of restenosis, including nonlinear lesion growth with time. The approach taken in this paper provides a framework for simulating restenosis; the next step will be to couple it with more patient-specific geometries and quantitative parameter data.