180 resultados para Cathy Henkel
Resumo:
Decision making is a fundamental clement of any sport, particularly open, fast, dynamic team sports such as football, basketball and rugby. At the elite level, athletes appear to consistently make good decisions in situations that are highly temporally constrained. To further understand how this is done has been the aim of researchers within the perception-action field for several decades. The purpose of this article is to present novel contributions, both theoretical and methodological, that are pushing the boundaries of this area of research. The theoretical framework (Ecological psychology) within which the work is posited will be described, followed by a description of Virtual Reality (VR) technology and how it relates to the theoretical aims. Finally, an applied example will be summarised in order to demonstrate how the theoretical approach and the methodological approach come together in practice.
Resumo:
Detections of CO, CS, SO, C2H, HCO+, HCN, HNC, H2CO, and C3H2 are reported from LIRS 36, a star-forming region in the Small Magellanic Cloud. (CO)-O-18, NO, CH3OH, and most notably CN have not been detected, while the rare isotopes (CO)-C-13 and, tentatively, (CS)-S-34 ar,seen. This is so far the most extensive molecular multiline study of an interstellar medium with a heavy element depletion exceeding a factor of four.
Resumo:
Nine H II regions of the LMC were mapped in (CO)-C-13(1-0) and three in (CO)-C-12(1-0) to study the physical properties of the interstellar medium in the Magellanic Clouds. For N113 the molecular core is found to have a peak position which differs from that of the associated H II region by 20 ''. Toward this molecular core the (CO)-C-12 and (CO)-C-13 peak T-MB line temperatures of 7.3 K and 1.2 K are the highest so far found in the Magellanic Clouds. The molecular concentrations associated with N113, N44BC, N159HW, and N214DE in the LMC and LIRS 36 in the SMC were investigated in a variety of molecular species to study the chemical properties of the interstellar medium. I(HCO+)/I(HCN) and I(HCN)/I(HNC) intensity ratios as well as lower limits to the I((CO)-C-13)/I((CO)-O-18) ratio were derived for the rotational 1-0 transitions. Generally, HCO+ is stronger than HCN, and HCN is stronger than HNC. The high relative HCO+ intensities are consistent with a high ionization flux from supernovae remnants and young stars, possibly coupled with a large extent of the HCO+ emission region. The bulk of the HCN arises from relatively compact dense cloud cores. Warm or shocked gas enhances HCN relative to HNC. From chemical model calculations it is predicted that I(HCN)/I(HNC) close to one should be obtained with higher angular resolution (less than or similar to 30 '') toward the cloud cores. Comparing virial masses with those obtained from the integrated CO intensity provides an H-2 mass-to-CO luminosity conversion factor of 1.8 x 10(20) mol cm(-2) (K km s(-1))(-1) for N113 and 2.4 x 10(20) mol cm(-2) (K km s(-1))(-1) for N44BC. This is consistent with values derived for the Galactic disk.
Resumo:
The first definite discoveries of extragalactic deuterium are reported. DCO+ has been detected in three and DCN has been measured in one star-forming region of the Large Magellanic Cloud (LMC). While the HCO+/DCO+ abundance ratios are found to be 19 +/- 3, 24 +/- 4, and 67 +/- 18 for N113, N44BC and N159HW, respectively, a HCN/DCN abundance ratio of 23 +/- 5 is obtained for N113. These results are consistent with a gas temperature of about 20 K and a D/H ratio of about 1.5 x 10(-5), consistent with that observed in the Galaxy. If the cloud temperature is closer to 30 K, then a D/H ratio is required to be up to an order of magnitude larger. Because this ratio provides a lower limit to the primordial D/H ratio, it indicates that the baryon mass density alone is unable to close the universe.
Resumo:
Ten detections and five tentative detections of hydrogen isocyanide (HNC) J=1-0 emission are reported from a survey including sixteen galaxies. Full maps are presented for the nuclear regions of NGC 253 and IC 342, partial maps for Maffei 2, M 82, and M 83. Toward IC 342, the HNC and HCO+ distributions differ from those observed in 12CO, 13CO, HCN, CS, and NH3. This is likely a consequence of the density structure. Relative HNC abundances are with 10(-10)-10(-9) much smaller than those measured in nearby dark clouds and appear to be slightly smaller than those in regions of massive star formation of the Galactic disk. This is consistent with the presence of dense warm gas or a frequent occurrence of shocks in the nuclear regions of the galaxies observed. As in prominent Galactic star forming regions, 3 mm HNC line emission tends to be weaker than the corresponding emission from HCN and HCO+. Toward Arp 220, however, the 3 mm HNC/HCN line intensity ratio is > 1. HNC/HCO+, HNC/CO, and HNC to 20 cm radio continuum luminosity ratios are also particularly large. A possible interpretation is the presence of cool quiescent gas outside the central region which contains the starburst. In the other ultraluminous galaxy observed, NGC 6240, X(HNC) 10 smaller than in Arp 220, demonstrating that the molecular composition in ultraluminous galaxies is far from being uniform.
Resumo:
Toward the starburst nucleus of NGC 253, C-12/C-13 line intensity ratios from six carbon bearing molecules (CO, CN, CS, HCN, HCO+, and HNC) are used to confine the possible range of carbon and oxygen isotope ratios. A detailed analysis yields C-12/C-13 approximately 40 and O-16/O-18 approximately 200. Also reported are first detections of (CS)-C-13 and of the 0(0) - 1(-1) E line of methanol (CH3OH) in an extragalactic source.
Resumo:
Observations of protonated HCN (HCNH+) in a selection of galactic molecular clouds are reported. This species plays a key role in understanding the chemistry of the important high density tracer HCN. HCNH+ has been detected in the nearby cold dust cloud TMC-1 with an ratio relative to HCN of [HCNH+]/[HCN] between 0.015 and 0.26 (preferred value 0.03) and tentatively in DR21(OH) with a ratio of approximately 0.01. This is about 100 times higher than the ratio of protonated carbon monoxide to CO [HCO+]/[CO], but comparable to the [HCS+]/[CS] ratio. Possible explanations of these high abundance ratios are discussed in the light of model calculations.