100 resultados para CUES
Resumo:
Animals can call on a multitude of sensory information to orient and navigate. In some cases they may calibrate these cues against each other to establish the most accurate information available. One such cue is the pattern of polarized light in the sky, which may be used as a geographical reference to calibrate other cues in the compass mechanism. Mammals, however, have not been shown to use this cue, even though they do calibrate a magnetic compass with sunset. In this paper we demonstrate that bats use polarization cues at sunset to calibrate a magnetic compass, subsequently used for orientation during a homing experiment. It is thus the only mammal known so far to make use of the polarization pattern in the sky. This is an intriguing finding as currently there is no clear understanding of how this cue is perceived in this taxon and has general implications for the sensory biology of mammalian vision.
Resumo:
Birds are capable of true navigation, the ability to return to a known goal from a place they have never visited before. This is demonstrated most spectacularly during the vast migratory journeys made by these animals year after year, often between continents and occasionally global in nature. However, it remains one of the great unanswered questions in science, despite more than 50 years of research in this field. Nevertheless, the study of true navigation in birds has made significant advances in the previous 20 years, in part thanks to the integration of many disciplines outside its root in behavioural biology, to address questions of neurobiology, molecular aspects, and the physics of sensory systems and environmental cues involved in bird navigation, often involving quantum physics. However, true navigation remains a controversial field, with many conflicting and confusing results making interpretation difficult, particularly for those outside or new to the field. Unlike many general texts on migration, which avoid discussion of these issues, this review will present these conflicting findings and assess the state of the field of true navigation during bird migration.
Resumo:
Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.
Resumo:
Human listeners seem to be remarkably able to recognise acoustic sound sources based on timbre cues. Here we describe a psychophysical paradigm to estimate the time it takes to recognise a set of complex sounds differing only in timbre cues: both in terms of the minimum duration of the sounds and the inferred neural processing time. Listeners had to respond to the human voice while ignoring a set of distractors. All sounds were recorded from natural sources over the same pitch range and equalised to the same duration and power. In a first experiment, stimuli were gated in time with a raised-cosine window of variable duration and random onset time. A voice/non-voice (yes/no) task was used. Performance, as measured by d', remained above chance for the shortest sounds tested (2 ms); d's above 1 were observed for durations longer than or equal to 8 ms. Then, we constructed sequences of short sounds presented in rapid succession. Listeners were asked to report the presence of a single voice token that could occur at a random position within the sequence. This method is analogous to the "rapid sequential visual presentation" paradigm (RSVP), which has been used to evaluate neural processing time for images. For 500-ms sequences made of 32-ms and 16-ms sounds, d' remained above chance for presentation rates of up to 30 sounds per second. There was no effect of the pitch relation between successive sounds: identical for all sounds in the sequence or random for each sound. This implies that the task was not determined by streaming or forward masking, as both phenomena would predict better performance for the random pitch condition. Overall, the recognition of familiar sound categories such as the voice seems to be surprisingly fast, both in terms of the acoustic duration required and of the underlying neural time constants.
Resumo:
This article addresses gender differences in laughter and smiling from an evolutionary perspective. Laughter and smiling can be responses to successful display behavior or signals of affiliation amongst conversational partners—differing social and evolutionary agendas mean there are different motivations when interpreting these signals. Two experiments assess perceptions of genuine
and simulated male and female laughter and amusement social signals. Results show male simulation can always be distinguished. Female simulation is more complicated as males seem to distinguish cues of simulation yet judge simulated signals to be genuine. Females judge other female’s genuine signals to have higher levels of simulation. Results highlight the importance of laughter and smiling in human interactions, use of dynamic stimuli, and using multiple methodologies to assess perception.
Resumo:
The ways in which fish use space in nature are described, distinguishing between movements within a home range, dispersal and directed migration, as are the mechanisms that determine how fish use space. The external stimuli to which fish respond, how they use these cues to find their way around and the role of hormones in migration are also covered. An account is then given of how movement and orientation change with age, the evidence for inherited differences in these aspects of behaviour and environmental effects on development of space use patterns. The benefits that accrue to fish from moving in particular ways are described, as are adverse consequences of such movements, in the form of energetic costs and exposure to predators and pathogens. The ways in which benefits and costs are balanced against each other are discussed, with special reference to diurnal vertical migration. Although cultured fish usually inhabit confined spaces, their natural patterns of orientation and movement can cause a number of problems in aquaculture and some of these are described. Such problems are amenable to biological solutions and these are considered in the final section of this chapter, which also looks at the potential for using what is known about how fish move about to improve the effectiveness of general husbandry practices.
Resumo:
Objectives: Interference between a target and simultaneous maskers occurs both at the cochlear level through energetic masking and more centrally through informational masking (IM). Hence, quantifying the amount of IM requires a strict control of the energetic component. Presenting target and maskers on different sides (i.e., dichotically) reduces energetic masking but provides listeners with important lateralization cues that also drastically reduce IM. The main purpose of this study (Experiment 1) was to evaluate a "switch" manipulation aiming at restoring most of the IM despite dichotic listening. Experiment 2 was designed to investigate the source of the difficulty induced by this switching dichotic condition.
Design: In Experiment 1, the authors presented 60 normal-hearing young adults with a detection task in which a regularly repeating target was embedded in a randomly varying background masker. The authors evaluated spatial masking release induced by three different dichotic listening conditions in comparison with a diotic baseline. Dichotic stimuli were presented in either a nonswitching or a switching condition. In the latter case, the presentation sides of dichotic target and maskers alternated several times throughout 10 sec sequences. The impact of the number of switches on IM was investigated parametrically, with both pure and complex tone sequences. In Experiment 2, the authors compared performance of 13 young, normal-hearing listeners in a monotic and dichotic version of the rapidly switching condition, using pure-tone sequences.
Results: When target and maskers switched rapidly within sequences, IM was significantly stronger than in nonswitching dichotic sequences and was comparable with the masking effect induced by diotic sequences. Furthermore, Experiment 2 suggests that rapidly switching target and maskers prevent listeners from relying on lateralization cues inherent to the dichotic condition, hence preserving important amounts of IM.
Conclusions: This paradigm thus provides an original tool to isolate IM in signal and maskers having overlapping spectra.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.
Resumo:
Previous research has shown that Parkinson's disease (PD) patients can increase the speed of their movement when catching a moving ball compared to when reaching for a static ball (Majsak et al., 1998). A recent model proposed by Redgrave et al. (2010) explains this phenomenon with regard to the dichotomic organization of motor loops in the basal ganglia circuitry and the role of sensory micro-circuitries in the control of goal-directed actions. According to this model, external visual information that is relevant to the required movement can induce a switch from a habitual control of movement toward an externally-paced, goal-directed form of guidance, resulting in augmented motor performance (Bienkiewicz et al., 2013). In the current study, we investigated whether continuous acoustic information generated by an object in motion can enhance motor performance in an arm reaching task in a similar way to that observed in the studies of Majsak et al. (1998, 2008). In addition, we explored whether the kinematic aspects of the movement are regulated in accordance with time to arrival information generated by the ball's motion as it reaches the catching zone. A group of 7 idiopathic PD (6 male, 1 female) patients performed a ball-catching task where the acceleration (and hence ball velocity) was manipulated by adjusting the angle of the ramp. The type of sensory information (visual and/or auditory) specifying the ball's arrival at the catching zone was also manipulated. Our results showed that patients with PD demonstrate improved motor performance when reaching for a ball in motion, compared to when stationary. We observed how PD patients can adjust their movement kinematics in accordance with the speed of a moving target, even if vision of the target is occluded and patients have to rely solely on auditory information. We demonstrate that the availability of dynamic temporal information is crucial for eliciting motor improvements in PD. Furthermore, these effects appear independent from the sensory modality through-which the information is conveyed.
Resumo:
Several animals and microbes have been shown to be sensitive to magnetic fields, though the exact mechanisms of this ability remain unclear in many animals. Chitons are marine molluscs which have high levels of biomineralised magnetite coating their radulae. This discovery led to persistent anecdotal suggestions that they too may be able to navigationally respond to magnetic fields. Several researchers have attempted to test this, but to date there have been no large-scale controlled empirical trials. In the current study, four chiton species (Katharina tunicata, Mopalia kennerleyi, Mopalia muscosa and Leptochiton rugatus, n=24 in each) were subjected to natural and artificially rotated magnetic fields while their movement through an arena was recorded over four hours. Field orientation did not influence the position of the chitons at the end of trials, possibly as a result of the primacy of other sensory cues (i.e. thigmotaxis). Under non-rotated magnetic field conditions, the orientation of subjects when they first reached the edge of an arena was clustered around 309-345 degrees (north-north-west) in all four species. However, orientations were random under the rotated magnetic field, which may indicate a disruptive effect of field rotation. This pattern suggests that chitons can detect and respond to magnetism.
Resumo:
The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.
Resumo:
BACKGROUND: The ovarian surface epithelium responds to cytokines and hormonal cues to initiate proliferation and migration following ovulation. Although insulin and IGF are potent proliferative factors for the ovarian surface epithelium and IGF is required for follicle development, increased insulin and IGF activity are correlated with at least two gynecologic conditions: polycystic ovary syndrome and epithelial ovarian cancer. Although insulin and IGF are often components of in vitro culture media, little is known about the effects that these growth factors may have on the ovarian surface epithelium morphology or how signaling in the ovarian surface may affect follicular health and development.
METHODS: Ovaries from CD1 mice were cultured in alginate hydrogels in the presence or absence of 5 μg/ml insulin or IGF-I, as well as small molecule inhibitors of IR/IGF1R, PI 3-kinase signaling, or MAPK signaling. Tissues were analyzed by immunohistochemistry for expression of cytokeratin 8 to mark the ovarian surface epithelium, Müllerian inhibiting substance to mark secondary follicles, and BrdU incorporation to assess proliferation. Changes in gene expression in the ovarian surface epithelium in response to insulin or IGF-I were analyzed by transcription array. Extracellular matrix organization was evaluated by expression and localization of collagen IV.
RESULTS: Culture of ovarian organoids with insulin or IGF-I resulted in formation of hyperplastic OSE approximately 4-6 cell layers thick with a high rate of proliferation, as well as decreased MIS expression in secondary follicles. Inhibition of the MAPK pathway restored MIS expression reduced by insulin but only partially restored normal OSE growth and morphology. Inhibition of the PI 3-kinase pathway restored MIS expression reduced by IGF-I and restored OSE growth to a single cell layer. Insulin and IGF-I altered organization of collagen IV, which was restored by inhibition of PI 3-kinase signaling.
CONCLUSIONS: While insulin and IGF are often required for propagation of primary cells, these cytokines may act as potent mitogens to disrupt cell growth, resulting in formation of hyperplastic OSE and decreased follicular integrity as measured by MIS expression and collagen deposition. This may be due partly to altered collagen IV deposition and organization in the ovary in response to insulin and IGF signaling mediated by PI 3-kinase.
Resumo:
In order to use virtual reality as a sport analysis tool, we need to be sure that an immersed athlete reacts realistically in a virtual environment. This has been validated for a real handball goalkeeper facing a virtual thrower. However, we currently ignore which visual variables induce a realistic motor behavior of the immersed handball goalkeeper. In this study, we used virtual reality to dissociate the visual information related to the movements of the player from the visual information related to the trajectory of the ball. Thus, the aim is to evaluate the relative influence of these different visual information sources on the goalkeeper's motor behavior. We tested 10 handball goalkeepers who had to predict the final position of the virtual ball in the goal when facing the following: only the throwing action of the attacking player (TA condition), only the resulting ball trajectory (BA condition), and both the throwing action of the attacking player and the resulting ball trajectory (TB condition). Here we show that performance was better in the BA and TB conditions, but contrary to expectations, performance was substantially worse in the TA condition. A significant effect of ball landing zone does, however, suggest that the relative importance between visual information from the player and the ball depends on the targeted zone in the goal. In some cases, body-based cues embedded in the throwing actions may have a minor influence on the ball trajectory and vice versa. Kinematics analysis was then combined with these results to determine why such differences occur depending on the ball landing zone and consequently how it can clarify the role of different sources of visual information on the motor behavior of an athlete immersed in a virtual environment.
Resumo:
Rationale
Previous research on attention bias in nondependent social drinkers has focused on adult samples with limited focus on the presence of attention bias for alcohol cues in adolescent social drinkers.
Objectives
The aim of this study was to examine the presence of alcohol attention bias in adolescents and the relationship of this cognitive bias to alcohol use and alcohol-related expectancies.
Methods
Attention bias in adolescent social drinkers and abstainers was measured using an eye tracker during exposure to alcohol and neutral cues. Questionnaires measured alcohol use and explicit alcohol expectancies.
Results
Adolescent social drinkers spent significantly more time fixating to alcohol stimuli compared to controls. Total fixation time to alcohol stimuli varied in accordance with level of alcohol consumption and was significantly associated with more positive alcohol expectancies. No evidence for automatic orienting to alcohol stimuli was found in adolescent social drinkers.
Conclusion
Attention bias in adolescent social drinkers appears to be underpinned by controlled attention suggesting that whilst participants in this study displayed alcohol attention bias comparable to that reported in adult studies, the bias has not developed to the point of automaticity. Initial fixations appeared to be driven by alternative attentional processes which are discussed further.
Resumo:
In a recent study, Greif et al. (2014) demonstrated a functional role of polarized light for a bat species confronted with a homing task. These non-migratory bats appeared to calibrate their magnetic compass by using polarized skylight at dusk, yet it is unknown if migratory bats also use these cues for calibration. During autumn migration, we equipped Nathusius' bats, Pipistrellus nathusii, with radio transmitters and tested if experimental animals exposed to a 90° rotated band of polarized light during dusk, would head in a different direction compared with control animals. After release, bats of both groups continued their journey in the same direction. This observation argues against the use of a polarization-calibrated magnetic compass by this migratory bat and questions that the ability of using polarized light for navigation is a consistent feature in bats. This finding matches with observations in some passerine birds that used polarized light for calibration of their magnetic compass before but not during migration.