86 resultados para Basic carbonate
Resumo:
Design and operation of Fe0 permeable reactive barriers (PRBs) can be improved by understanding the long-term mineralogical transformations that occur within PRBs. Changes in mineral precipitates, cementation, and corrosion of Fe0 filings within an in situ pilot-scale PRB were examined after the first 30 months of operation and compared with results of a previous study of the PRB conducted 15 months earlier using X-ray diffraction and scanning electron microscopy employing energy dispersive X-ray and backscatter electron analyses. Iron (oxy)hydroxides, aragonite, and maghemite and/or magnetite occurred throughout the cores collected 30 mo after installation. Goethite, lepidocrocite, mackinawite, aragonite, calcite, and siderite were associated with oxidized and cemented areas, while green rusts were detected in more reduced zones. Basic differences from our last detailed investigation include (i) mackinawite crystallized from amorphous FeS, (ii) aragonite transformed into calcite, (iii) akaganeite transformed to goethite and lepidocrocite, (iv) iron (oxy)hydroxides and calcium and iron carbonate minerals increased, (v) cementation was greater in the more recent study, and (vi) oxidation, corrosion, and disintegration of Fe0 filings were greater, especially in cemented areas, in the more recent study. If the degree of corrosion and cementation that was observed from 15 to 30 mo after installation continues, certain portions of the PRB (i.e., up-gradient entrance of the ground water to the Fe0 section of the PRB) may last less than five more years, thus reducing the effectiveness of the PRB to mitigate contaminants.
Resumo:
This work provides a study of mixtures of the azepanium-based ionic liquid (IL) N-methyl, N-butyl-azepanium bis[(trifluoromethane) sulfonyl]imide (Azp14TFSI) and propylene carbonate (PC) as electrolyte components in electrochemical double layer capacitors (EDLCs). The considered mixtures' properties were then compared to the properties of mixtures of N-butyl, N-methylpyrrolidinium bis[(trifluoromethane) sulfonyl]imide (Pyr14TFSI) and PC in terms of viscosity, conductivity and electrochemical behavior. The mixtures' operative potentials were found to be comparable to each other, leading to operative voltages as high as 3.5 V, while retaining the low viscosities and high conductivities of PC based EDLC electrolytes.
Resumo:
Relative sea-level rise has been a major factor driving the evolution of reef systems during the Holocene. Most models of reef evolution suggest that reefs preferentially grow vertically during rising sea level then laterally from windward to leeward, once the reef flat reaches sea level. Continuous lagoonal sedimentation ("bucket fill") and sand apron progradation eventually lead to reef systems with totally filled lagoons. Lagoonal infilling of One Tree Reef (southern Great Barrier Reef) through sand apron accretion was examined in the context of late Holocene relative sea-level change. This analysis was conducted using sedimentological and digital terrain data supported by 50 radiocarbon ages from fossil microatolls, buried patch reefs, foraminifera and shells in sediment cores, and recalibrated previously published radiocarbon ages. This data set challenges the conceptual model of geologically continuous sediment infill during the Holocene through sand apron accretion. Rapid sand apron accretion occurred between 6000 and 3000 calibrated yr before present B.P. (cal. yr B.P.); followed by only small amounts of sedimentation between 3000 cal. yr B.P. and present, with no significant sand apron accretion in the past 2 k.y. This hiatus in sediment infill coincides with a sea-level fall of similar to 1-1.3 m during the late Holocene (ca. 2000 cal. yr B.P.), which would have caused the turn-off of highly productive live coral growth on the reef flats currently dominated by less productive rubble and algal flats, resulting in a reduced sediment input to back-reef environments and the cessation in sand apron accretion. Given that relative sea-level variations of similar to 1 m were common throughout the Holocene, we suggest that this mode of sand apron development and carbonate production is applicable to most reef systems.
Resumo:
A number of tetraalkylammonium methylcarbonate and hydrogencarbonate based ionic liquids are shown to be capable of reacting with the naphthenic acids contained in Doba crude oil via a neutralisation reaction. Spectral studies show that the ionic liquids neutralisation mechanism involves the formation of an ionic liquid-naphthenate complex, liberating methanol and carbon dioxide. Extraction of the neutralised complex into a separate methanol phase and subsequent regeneration using aqueous carbonic acid results in ∼70% of the ionic liquid being recovered for recycle. Isolation of the naphthenic acids shows that these make up to 0.85 wt% of the crude oil. Speciation of the naphthenic acids shows a mixture of monocyclic, through to tetracyclic structures with carbon numbers in the range C12-C40.
Resumo:
We show that if E is an atomic Banach lattice with an ordercontinuous norm, A, B ∈ Lr(E) and MA,B is the operator on Lr(E) defined by MA,B(T) = AT B then ||MA,B||r = ||A||r||B||r but that there is no real α > 0 such that ||MA,B || ≥ α ||A||r||B ||r.
Resumo:
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
Resumo:
Methane-derived authigenic carbonate (MDAC) mound features at the Codling Fault Zone (CFZ), located in shallow waters (50-120m) of the western Irish Sea were investigated and provide a comparison to deep sea MDAC settings. Carbonates consisted of aragonite as the major mineral phase, with δ13C depletion to -50‰ and δ18O enrichment to~2‰. These isotope signatures, together with the co-precipitation of framboidal pyrite confirm that anaerobic oxidation of methane (AOM) is an important process mediating methane release to the water column and the atmosphere in this region. 18O-enrichment could be a result of MDAC precipitation with seawater in colder than present day conditions, or precipitation with 18O-enriched water transported from deep petroleum sources. The 13C depletion of bulk carbonate and sampled gas (-70‰) suggests a biogenic source, but significant mixing of thermogenic gas and depletion of the original isotope signature cannot be ruled out. Active seepage was recorded from one mound and together with extensive areas of reduced sediment, confirms that seepage is ongoing. The mounds appear to be composed of stacked pavements that are largely covered by sand and extensively eroded. The CFZ mounds are colonized by abundant Sabellaria polychaetes and possible Nemertesia hydroids, which benefit indirectly from available hard substrate. In contrast to deep sea MDAC settings where seep-related macrofauna are commonly reported, seep-specialist fauna appear to be lacking at the CFZ. In addition, unlike MDAC in deep waters where organic carbon input from photosynthesis is limited, lipid biomarkers and isotope signatures related to marine planktonic production (e.g. sterols, alkanols) were most abundant. Evidence for microbes involved in AOM was limited from samples taken; possibly due to this dilution effect from organic matter derived from the photic zone, and will require further investigation.
Resumo:
A new radiocarbon preparation facility was set up in 2010 at the Godwin Laboratory for Palaeoclimate Research, at the University of Cambridge. Samples are graphitized via hydrogen reduction on an iron powder catalyst before being sent to the Chrono Centre, Belfast, or the Australian National University for accelerator mass spectrometry (AMS) analysis. The experimental setup and procedure have recently been developed to investigate the potential for running small samples of foraminiferal carbonate. By analyzing background values of samples ranging from 0.04 to 0.6 mg C along with similar sized secondary standards, the setup and experimental procedures were optimized for small samples. “Background” modern 14C contamination has been minimized through careful selection of iron powder, and graphitization has been optimized through the use of “small volume” reactors, allowing samples containing as little as 0.08 mg C to be graphitized and accurately dated. Graphitization efficiency/fractionation is found not to be the main limitation on the analysis of samples smaller than 0.07 mg C, which rather depends primarily on AMS ion beam optics, suggesting further improvements in small sample analysis might yet be achieved with our methodology.
Resumo:
We propose and advocate basic principles for the fusion of incomplete or uncertain information items, that should apply regardless of the formalism adopted for representing pieces of information coming from several sources. This formalism can be based on sets, logic, partial orders, possibility theory, belief functions or imprecise probabilities. We propose a general notion of information item representing incomplete or uncertain information about the values of an entity of interest. It is supposed to rank such values in terms of relative plausibility, and explicitly point out impossible values. Basic issues affecting the results of the fusion process, such as relative information content and consistency of information items, as well as their mutual consistency, are discussed. For each representation setting, we present fusion rules that obey our principles, and compare them to postulates specific to the representation proposed in the past. In the crudest (Boolean) representation setting (using a set of possible values), we show that the understanding of the set in terms of most plausible values, or in terms of non-impossible ones matters for choosing a relevant fusion rule. Especially, in the latter case our principles justify the method of maximal consistent subsets, while the former is related to the fusion of logical bases. Then we consider several formal settings for incomplete or uncertain information items, where our postulates are instantiated: plausibility orderings, qualitative and quantitative possibility distributions, belief functions and convex sets of probabilities. The aim of this paper is to provide a unified picture of fusion rules across various uncertainty representation settings.