162 resultados para Allergic inflammation
Resumo:
Neovascular retinal disease is a leading cause of blindness orchestrated by inflammatory responses. Although noninfectious uveoretinitis is mediated by CD4(+) T cells, in the persistent phase of disease, angiogenic responses are observed, along with degeneration of the retina. Full clinical manifestation relies on myeloid-derived cells, which are phenotypically distinct from, but potentially sharing common effector responses to age-related macular degeneration. To interrogate inflammation-mediated angiogenesis, we investigated experimental autoimmune uveoretinitis, an animal model for human uveitis. After the initial acute phase of severe inflammation, the retina sustains a persistent low-grade inflammation with tissue-infiltrating leukocytes for over 4 months. During this persistent phase, angiogenesis is observed as retinal neovascular membranes that arise from inflamed venules and postcapillary venules, increase in size as the disease progresses, and are associated with infiltrating arginase-1(+) macrophages. In the absence of thrombospondin-1, retinal neovascular membranes are markedly increased and are associated with arginase-1(-) CD68(+) macrophages, whereas deletion of the chemokine receptor CCR2 resulted in reduced retinal neovascular membranes in association with a predominant neutrophil infiltrate. CCR2 is important for macrophage recruitment to the retina in experimental autoimmune uveoretinitis and promotes chronicity in the form of a persistent angiogenesis response, which in turn is regulated by constitutive expression of angiogenic inhibitors like thrombospondin-1. This model offers a new platform to dissect the molecular and cellular pathology of inflammation-induced ocular angiogenesis.
Resumo:
Epidemiological evidence supports a positive relationship between fruit and vegetable (FV) intake, lung function and chronic obstructive pulmonary disease (COPD). Increasing FV intake may attenuate the oxidative stress and inflammation associated with COPD.
An exploratory randomised controlled trial to examine the effect of increased consumption of FV on oxidative stress and inflammation in moderate-to-severe COPD was conducted. 81 symptomatically stable patients with a habitually low FV intake (two or fewer portions of FV per day) were randomised to the intervention group (five or more portions of FV per day) or the control group (two or fewer portions of FV per day). Each participant received self-selected weekly home deliveries of FV for 12 weeks.
75 participants completed the intervention. There was a significant between-group change in self-reported FV intake and biomarkers of FV intake (zeaxanthin (p=0.034) and ß-cryptoxanthin (p=0.015)), indicating good compliance; post-intervention intakes in intervention and control groups were 6.1 and 1.9 portions of FV per day, respectively. There were no significant changes in biomarkers of airway inflammation (interleukin-8 and myeloperoxidase) and systemic inflammation (C-reactive protein) or airway and systemic oxidative stress (8-isoprostane).
This exploratory study demonstrated that patients with moderate-to-severe COPD were able to comply with an intervention to increase FV intake; however, this had no significant effect on airway or systemic oxidative stress and inflammation.
Resumo:
Background The use of portable fractional exhaled nitric oxide (FENO) devices is increasingly common in the diagnosis and management of allergic airways inflammation. Methods We tested two handheld FENO devices, to determine (a) if there was adequate intradevice repeatability to allow the use of single breath testing, and (b) if the devices could be used interchangeably. In a mixed pediatric population, including normal, asthmatic, and children with peanut allergies, 858 paired values were collected from the NIOX-MINO® and/or the NObreath® devices. Results The NIOX-MINO® showed excellent repeatability (mean difference of 0.1 with 95% limits of agreement between -7.93 to 7.72?ppb), while the NObreath® showed good repeatability (mean difference of -1.61 with 95% limits of agreement between -14.1 and 10.8?ppb). Intradevice repeatability was good but not adequate and the NIOX-MINO® systematically produced higher results than the NObreath® [mean difference of 7.8?ppb with 95% limits of agreement from -11.55 to 27.52?ppb (-33% to 290%)]. Conclusions Our results support the manufacturer's advice that single breath testing is appropriate for the NIOX-MINO®. NObreath® results indicate that the mean of more than one breath should be utilized. The devices cannot be used interchangeably. Pediatr Pulmonol. © 2011 Wiley Periodicals, Inc.