145 resultados para surface plasmon wave
Resumo:
F1F0-ATPase was initially believed to be strictly expressed in the mitochondrial membrane. Interestingly, recent reports have shown that the F1 complex can serve as a cell surface receptor for apparently unrelated ligands. Here, we show for the first time the presence of the F1-ATPase at the cell surface of normal or cancerous colonic epithelial cells. Using Surface Plasmon Resonance technology and mass spectrometry, we identified a peptide hormone product of the gastrin gene (glycine-extended gastrin, G-gly), as a new ligand for the F1-ATPase. By molecular modeling, we identified the motif in the peptide sequence (EE/DxY), which directly interacts with the F1-ATPase and the amino-acids in the F1-ATPase which bind this motif. Replacement of the E9 residue by an alanine in the EE/DxY motif resulted in a strong decrease of G-gly binding to the F1-ATPase and the loss of its biological activity. In addition we demonstrated that F1-ATPase mediates the growth effects of the peptide. Indeed, blocking ATPase activity decreases G-gly-induced cell growth. The mechanism likely involves ADP production by the membrane F1-ATPase which is induced by G-gly. These results suggest an important contribution of cell surface ATPase in the pro-proliferative action of this gastrointestinal peptide.
Resumo:
We present here a detailed study of the complex relationship between the electromagnetic near-field and far-field responses of "real" nanostructured metallic surfaces. The near-field and far-field responses are specified in terms of (spectra of) the surface-enhanced Raman-scattering enhancement factor (SERS EF) and optical extinction, respectively. First, it is shown that gold nanorod- and nanotube-array substrates exhibit three distinct localized surface plasmon resonances (LSPRs): a longitudinal, a transverse, and a cavity mode. The cavity mode simultaneously has the largest impact on the near-field behavior (as observed through the SERS EF) and the weakest optical interaction: It has a "near-field-type" character. The transverse and longitudinal modes have a significant impact on the far-field behavior but very little impact on SERS: They have a "far-field-type" character. We confirm the presence of the cavity mode using a combination of SERS EF spectra, electron microscopy, and electromagnetic modeling and thus clearly illustrate and explain the (lack of) correlation between the SERS EF spectra and the optical response in terms of the contrasting character of the three LSPRs. In doing so, we experimentally demonstrate that, for a surface that supports multiple LSPRs, the near-field and far-field properties can in fact be tuned almost independently. It is further demonstrated that small changes in geometrical parameters that tune the spectral location of the LPSRs can also drastically influence the character of these modes, resulting in certain unusual behavior, such as the far-field resonance redshift as the near-field resonance blueshifts. DOI: 10.1103/PhysRevX.3.011001
Resumo:
The efficient resonant nonlinear coupling between localized surface plasmon modes is demonstrated in a simple and intuitive way using boundary integral formulation and utilizing second-order optical nonlinearity. The nonlinearity is derived from the hydrodynamic description of electron plasma and originates from the presence of material interfaces in the case of small metal particles. The coupling between fundamental and second-harmonic modes is shown to be symmetry selective and proportional to the spatial overlap between polarization dipole density of the second-harmonic mode and the square of the polarization charge density of the fundamental mode. Particles with high geometrical symmetry will convert a far-field illumination into dark nonradiating second-harmonic modes, such as quadrupoles. Effective second-harmonic susceptibilities are proportional to the surface-to-volume ratio of a particle, emphasizing the nanoscale enhancement of the effect.
Resumo:
Light emitted from metal/oxide/metal tunnel junctions can originate from the slow-mode surface plasmon polariton supported in the oxide interface region. The effective radiative decay of this mode is constrained by competition with heavy intrinsic damping and by the need to scatter from very small scale surface roughness; the latter requirement arises from the mode's low phase velocity and the usual momentum conservation condition in the scattering process. Computational analysis of conventional devices shows that the desirable goals of decreased intrinsic damping and increased phase velocity are influenced, in order of priority, by the thickness and dielectric function of the oxide layer, the type of metal chosen for each conducting electrode, and temperature. Realizable devices supporting an optimized slow-mode plasmon polariton are suggested. Essentially these consist of thin metal electrodes separated by a dielectric layer which acts as a very thin (a few nm) electron tunneling barrier but a relatively thick (several 10's of nm) optically lossless region. (C) 1995 American Institute of Physics.
Resumo:
The well known advantages of using surface plasmons, in particular the high sensitivity to surface adsorbates, are nearly always compromised in practice by the use of monochromatic excitation and the consequent lack of proper spectroscopic information. This limitation arises from the angle/wavelength selective nature of the surface plasmon resonance. The work described here uses an elegant broadband excitation/decay scheme in a substrate(silica)-grating profiled photoresist-Ag film geometry. Laser radiation of wavelength 488 nm, incident through the silica substrate, excites by near-field coupling a broad band of surface plasmons at the photoresist-Ag interface within the spectral range of the photoresist fluorescence. With a judicious choice of grating period this mode can cross-couple to the mode supported at the Ag-air interface. This latter mode can, in turn, couple out to light by virtue of the same grating profile. The spectral distribution of the light emitted due to this three-step process has been studied as a function of the angle of emission and depth of the grating profiled surface for each polarization. It is found that the optimum emission efficiency occurs with a groove depth in the region of 65 nm. This is considerably greater than the optimum depth of 40 nm required for surface plasmon-photon coupling at a Ag-air interface or, in other words, for the last step of the process in isolation.
Resumo:
The surface roughness of nominally smooth and of randomly roughened thin silver films is characterized using scanning tunneling microscopy and the metal grain size is assessed using transmission electron microscopy. On each type of substrate used, glass or CaF2-roughened glass, the silver films are deposited either very slowly (approximately 0.15 nm s-1) or quite quickly (approximately 2.0 nm s-1). Only silver films deposited on CaF2-roughened glass yield measurable surface-enhanced Raman signals for benzoic acid; the enhancement is brought about by surface field amplification due to the excitation of delocalized surface-plasmon polaritons. However, the surface-enhanced Raman signals obtained from the slow-deposited silver films are significantly better (by about a factor of 3) than those obtained from the fast-deposited silver films on a given CaF2-roughened substrate. The explanation of this observation does not lie with different surface roughness; both types of film yield closely similar data on the scanning tunneling microscope. Rather, it is suggested that the relatively small grain size of the fast-deposited silver films leads to increased elastic scattering of surface-plasmon polaritons at the grain boundaries, with a consequent increase of internal damping. This results in a reduction of the scattered Raman signal.
Resumo:
Using the Otto (prism-air gap-sample) configuration p-polarized light of wavelength 632.8 nm has been coupled with greater than 80% efficiency to surface plasmons on the aluminium electrode of silicon-silicon dioxide-aluminium structures. The results show that if the average power per unit area dissipated on the metal film exceeds approximately 1 mW mm-2, then the coupling gap and thus the characteristics of the surface plasmon resonance are noticeably altered. In modelling the optical response of such systems the inclusion of both a non-uniform air coupling gap and a thin cermet layer at the aluminium surface may be necessary.
Resumo:
Visible light is emitted from the Au-air interface of Al-I-Au thin-film tunnel junctions (deposited over a thin layer of CaF2 on glass) as a result of the decay of surface plasmon polaritons (SPPs). We show the surface topography of such a Au film and relate its large-scale features to the outcoupling of fast SPP's to photons. The absence of short-scale roughness features is explained by thier disappearance through surface diffusion. To confirm this a controlled sequence of 5-nm, 20-ms scanning tunneling microscope (STM) W tip crashes has been used to produce indentations 3 nm deep with a lateral dimension of 5-7 nm on a Au crystal in air at room temperature. Four sequences of indentations were drawn in the form of a square box. Right from the start, feature decay is observed and over a period of 2 h a succession of images shows that the structure disappears into the background as a result of surface diffusion. The surface diffusion constant is estimated to be 10(-18) cm2 s-1. The lack of light output via slow mode SPPs is an inevitable consequence of surface annealing.
Resumo:
Using the Otto geometry of attenuated total reflection (prism-air gap-sample), front illuminated PtSi/Si Schottky barrier detectors are shown to exhibit enhanced photocurrent at surface plasmon resonance in the near infrared region. Correlation of the measured photocurrent with the calculated transmittance of light into the Si substate is demonstrated. The transmittance, which is due to surface plasmon re-radiation, is the optical parameter of principal importance in photosignal generation since the photon energies used here are greater than the silicon intrinsic bandgap. The results presented here indicate clearly the important features in optimizing surface plasmon enhancement in photodetection both above and below the silicon absorption edge.
Resumo:
The intensity of surface enhanced Raman scattering from benzoic acid derivatives on mildly roughened, thermally evaporated Ag films shows a remarkably strong dependence on metal grain size. Large grained (slowly deposited) films give a superior response, by up to a factor of 10, to small grained (quickly deposited) films, with films of intermediate grain size yielding intermediate results. The optical field amplification underlying the enhancement mechanism is due to the excitation of surface plasmon polaritons (SPPs). Since surface roughness characteristics, as determined by STM, remain relatively constant as a function of deposition rate, it is argued that the contrast in Raman scattering is due to differences in elastic grain boundary scattering of SPPs (leading to different degrees of internal SPP damping), rather than differences in the interaction of SPPs with surface inhomogeneities.
Resumo:
Here, we demonstrate that quasi self-standing Au nanorod arrays prepared with plasma polymerisation deposited SiO2 dielectric spacers support surface enhanced fluorescence (SEF) while maintaining high signal reproducibility. We show that it is possible to find a balance between enhanced radiative and non-radiative decay rates at which the fluorescent intensity is maximized. The SEF signal optimised with a 30 nm spacer layer thickness showed a 3.5-fold enhancement with a signal variance of <15% thereby keeping the integrity of the nanorod array. We also demonstrate the decreased importance of obtaining resonance conditions when localized surface plasmon resonance is positioned within the spectral region of Au interband transitions. Procedures for further increasing the SEF enhancement factor are also discussed.
Resumo:
A critical role for the conserved -integrin cytoplasmic motif, KVGFFKR, is recognized in the regulation of activation of the platelet integrin IIb3. To understand the molecular mechanisms of this regulation, we sought to determine the nature of the protein interactions with this cytoplasmic motif. We used a tagged synthetic peptide, biotin-KVGFFKR, to probe a high density protein expression array (37,200 recombinant human proteins) for high affinity interactions. A number of potential integrin-binding proteins were identified. One such protein, a chloride channel regulatory protein, ICln, was characterized further because its affinity for the integrin peptide was highest as was its expression in platelets. We verified the presence of ICln in human platelets by PCR, Western blots, immunohistochemistry, and its co-association with IIb3 by surface plasmon resonance. The affinity of this interaction was 82.2 ± 24.4 nM in a cell free assay. ICln co-immunoprecipitates with IIb3 in platelet lysates demonstrating that this interaction is physiologically relevant. Furthermore, immobilized KVGFFKR peptides, but not control KAAAAAR peptides, specifically extract ICln from platelet lysates. Acyclovir (100 µM to 5 mM), a pharmacological inhibitor of the ICln chloride channel, specifically inhibits integrin activation (PAC-1 expression) and platelet aggregation without affecting CD62 P expression confirming a specific role for ICln in integrin activation. In parallel, a cell-permeable peptide corresponding to the potential integrin-recognition domain on ICln (AKFEEE, 10–100 µM) also inhibits platelet function. Thus, we have identified, verified, and characterized a novel functional interaction between the platelet integrin and ICln, in the platelet membrane.
Resumo:
The contribution of electron-phonon scattering and grain boundary scattering to the mid-IR (lambda = 3.392 mum) properties of An has been assessed by examining both bulk, single crystal samples-Au(1 1 1) and Au(1 1 0)-and thin film, polycrystalline An samples at 300 K and 100 K by means of surface plasmon polariton excitation. The investigation constitutes a stringent test for the in-vacuo Otto-configuration prism coupler used to perform the measurements, illustrating its strengths and limitations. Analysis of the optical response is guided by a physically based interpretation of the Drude model. Relative to the reference case of single crystal Au at 100 K (epsilon = - 568 + i17.5), raising the temperature to 300 K causes increased electron-phonon scattering that accounts for a reduction of similar to40 nm in the electron mean free path. Comparison of a polycrystalline sample to the reference case determines a mean free path due to grain boundary scattering of similar to 17 nm, corresponding to about half the mean grain size as determined from atomic force microscopy and indicating a high reflectance coefficient for the An grain boundaries. An analysis combining consideration of grain boundary scattering and the inclusion of a small percentage of voids in the polycrystalline film by means of an effective medium model indicates a value for the grain boundary reflection coefficient in the range 0.55-0.71. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Aggregated Au colloids have been widely used as SERS enhancing media for many years but to date there has been no systematic investigation of the effect of the particle size on the enhancements given by simple aggregated Au colloid solutions. Previous systematic studies on isolated particles in solution or multiple particles deposited onto surfaces reported widely different optimum particle sizes for the same excitation wavelength and also disagreed on the extent to which surface plasmon absorption spectra were a good predictor of enhancement factors. In this work the spectroscopic properties of a range of samples of monodisperse Au colloids with diameters ranging from 21 to 146 nm have been investigated in solution. The UV/visible absorption spectra of the colloids show complex changes as a function of aggregating salt (MgSO4) concentration which diminish when the colloid is fully aggregated. Under these conditions, the relative SERS enhancements provided by the variously sized colloids vary very significantly across the size range. The largest signals in the raw data are observed for 46 nm colloids but correction for the total surface area available to generate enhancement shows that particles with 74 nm diameter give the largest enhancement per unit surface area. The observed enhancements do not correlate with absorbance at the excitation wavelength but the large differences between differently sized colloids demonstrate that even in the randomly aggregated particle assemblies studied here, inhomogeneous broadening does not mask the underlying changes due to differences in particle diameter.
Resumo:
Surface plasmon resonance (SPR) based biosensor technology has been widely used in life science research for many applications. While the advantages of speed, ruggedness, versatility, sensitivity and reproducibility are often quoted, many researchers have experienced severe problem of non-specific binding (NSB) to chip surfaces when performing analysis of biological samples Such as bovine serum. Using the direct measurement of the bovine protein leptin, present in bovine serum samples as a model, a unique buffering system has been developed and optimised which was able to significantly reduce the non-specific interactions of bovine serum components with the carboxymethyl dextran chip (CM5) surface on a Biacore SPR The developed NSB buffering system comprised of HBS-EP buffer, containing 0.5 M NaCl, 0.005% CM-dextran pH 9.0. An average NSB reduction (n = 20) of 85.9% and 87.3% was found on an unmodified CM5 surface and a CM5 with bovine leptin immobilised on the chip surface, respectively. A reduction in NSB of up to 94% was observed on both surfaces. The concentration of the constitutive components and pH of the buffer were crucial in achieving this outcome. (C) 2008 Elsevier B.V. All rights reserved.