93 resultados para srs-1 gene mapping


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: DTNBP1 is associated with schizophrenia in many studies, but the associated alleles and haplotypes vary between samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: The histidine triad nucleotide-binding protein 1, HINT1, hydrolyzes adenosine 5'monophosphoramidate substrates such as AMP-morpholidate. The human HINT1 gene is located on chromosome 5q31.2, a region implicated in linkage studies of schizophrenia. HINT1 had been shown to have different expression in postmortem brains between schizophrenia patients and unaffected controls. It was also found to be associated with the dysregulation of postsynaptic dopamine transmission, thus suggesting a potential role in several neuropsychiatric diseases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Proteomic and transcriptomic platforms both play important roles in cancer research, with differing strengths and limitations. Here, we describe a proteo-transcriptomic integrative strategy for discovering novel cancer biomarkers, combining the direct visualization of differentially expressed proteins with the high-throughput scale of gene expression profiling. Using breast cancer as a case example, we generated comprehensive two-dimensional electrophoresis (2DE)/mass spectrometry (MS) proteomic maps of cancer (MCF-7 and HCC-38) and control (CCD-1059Sk) cell lines, identifying 1724 expressed protein spots representing 484 different protein species. The differentially expressed cell-line proteins were then mapped to mRNA transcript databases of cancer cell lines and primary breast tumors to identify candidate biomarkers that were concordantly expressed at the gene expression level. Of the top nine selected biomarker candidates, we reidentified ANX1, a protein previously reported to be differentially expressed in breast cancers and normal tissues, and validated three other novel candidates, CRAB, 6PGL, and CAZ2, as differentially expressed proteins by immunohistochemistry on breast tissue microarrays. In total, close to half (4/9) of our protein biomarker candidates were successfully validated. Our study thus illustrates how the systematic integration of proteomic and transcriptomic data from both cell line and primary tissue samples can prove advantageous for accelerating cancer biomarker discovery.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The C-type lectin langerin/CD207 was originally discovered as a specific marker for epidermal Langerhans cells (LC). Recently, additional and distinct subsets of langerin(+) dendritic cells (DC) have been identified in lymph nodes and peripheral tissues of mice. Although the role of LC for immune activation or modulation is now being discussed controversially, other langerin(+) DC appear crucial for protective immunity in a growing set of infection and vaccination models. In knock-in mice that express the human diphtheria toxin receptor under control of the langerin promoter, injection of diphtheria toxin ablates LC for several weeks whereas other langerin(+) DC subsets are replenished within just a few days. Thus, by careful timing of diphtheria toxin injections selective states of deficiency in either LC only or all langerin(+) cells can be established. Taking advantage of this system, we found that, unlike selective LC deficiency, ablation of all langerin(+) DC abrogated the activation of IFN-gamma producing and cytolytic CD8(+) T cells after gene gun vaccination. Moreover, we identified migratory langerin(+) dermal DC as the subset that directly activated CD8(+) T cells in lymph nodes. Langerin(+) DC were also critical for IgG1 but not IgG2a Ab induction, suggesting differential polarization of CD4(+) T helper cells by langerin(+) or langerin-negative DC, respectively. In contrast, protein vaccines administered with various adjuvants induced IgG1 independently of langerin(+) DC. Taken together, these findings reflect a highly specialized division of labor between different DC subsets both with respect to Ag encounter as well as downstream processes of immune activation. The Journal of Immunology, 2011, 186: 1377-1383.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Papillon-Lefevre syndrome, or keratosis palmoplantaris with periodontopathia (PLS, MIM 245000), is an autosomal recessive disorder that is mainly ascertained by dentists because of the severe periodontitis that afflicts patients(1,2). Both the deciduous and permanent dentitions are affected, resulting in premature tooth loss. Palmoplantar keratosis, varying from mild psoriasiform scaly skin to overt hyperkeratosis, typically develops within the first three years of life. Keratosis also affects other sites such as elbows and knees. Most PLS patients display both periodontitis and hyperkeratosis. some patients have only palmoplantar keratosis or periodontitis, and in rare individuals the periodontitis is mild and of late onset(3-6). The PLS locus has been mapped to chromosome 11q14-q21 (refs 7-9). Using homozygosity mapping in eight small consanguineous families, we have narrowed the candidate region to a 1.2-cM interval between D11S4082 and D11S931. The gene (CTSC) encoding the lysosomal protease cathepsin C (or dipeptidyl aminopeptidase I) lies within this interval. We defined the genomic structure of CTSC and found mutations in all eight families. In two of these families we used a functional assay to demonstrate an almost total loss of cathepsin C activity in PLS patients and reduced activity in obligate carriers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this work, we demonstrate that the wbbD gene of the O7 lipopolysaccharide (LPS) biosynthesis cluster in Escherichia coli strain VW187 (O7:K1) encodes a galactosyltransferase involved in the synthesis of the O7-polysaccharide repeating unit. The galactosyltransferase catalyzed the transfer of Gal from UDP-Gal to the GlcNAc residue of a GlcNAc-pyrophosphate-lipid acceptor. A mutant strain with a defective wbbD gene was unable to form O7 LPS and lacked this specific galactosyltransferase activity. The normal phenotype was restored by complementing the mutant with the cloned wbbD gene. To characterize the WbbD galactosyltransferase, we used a novel acceptor substrate containing GlcNAcalpha-pyrophosphate covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-phenyl). The WbbD galactosyltransferase had optimal activity at pH 7 in the presence of 2.5 mM MnCl(2). Detergents in the assay did not increase glycosyl transfer. Digestion of enzyme product by highly purified bovine testicular beta-galactosidase demonstrated a beta-linkage. Cleavage of product by pyrophosphatase and phosphatase, followed by HPLC and NMR analyses, revealed a disaccharide with the structure Gal beta1-3GlcNAc. Our results conclusively demonstrate that WbbD is a UDP-Gal: GlcNAcalpha-pyrophosphate-R beta1,3-galactosyltransferase and suggest that the novel synthetic glycolipid acceptor may be generally applicable to characterize other bacterial glycosyltransferases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: Peptide YY (PYY) is a gastrointestinal hormone with physiological actions regulating appetite and energy homoeostasis. The cellular mechanisms by which nutrients stimulate PYY secretion from intestinal enteroendocrine cells are still being elucidated.

METHODS: This study comprehensively evaluated the suitability of intestinal STC-1 cells as an in vitro model of PYY secretion. PYY concentrations (both intracellular and in culture media) with other intestinal peptides (CCK, GLP-1 and GIP) demonstrated that PYY is a prominent product of STC-1 cells. Furthermore, acute and chronic PYY responses to 15 short (SCFAs)- and long-chain (LCFAs) dietary fatty acids were measured alongside parameters for DNA synthesis, cell viability and cytotoxicity.

RESULTS: We found STC-1 cells to be reliable secretors of PYY constitutively releasing PYY into cell culture media (but not into non-stimulatory buffer). We demonstrate for the first time that STC-1 cells produce PYY mRNA transcripts; that STC-1 cells produce specific time- and concentration-dependent PYY secretory responses to valeric acid; that linoleic acid and conjugated linoleic acid 9,11 (CLA 9,11) are potent PYY secretagogues; and that chronic exposure of SCFAs and LCFAs can be detrimental to STC-1 cells.

CONCLUSIONS: Our studies demonstrate the potential usefulness of STC-1 cells as an in vitro model for investigating nutrient-stimulated PYY secretion in an acute setting. Furthermore, our discovery that CLA directly stimulates L-cells to secrete PYY indicates another possible mechanism contributing to the observed effects of dietary CLA on weight loss.