157 resultados para spiral extrusion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polymer extrusion is regarded as an energy-intensive production process, and the real-time monitoring of both energy consumption and melt quality has become necessary to meet new carbon regulations and survive in the highly competitive plastics market. The use of a power meter is a simple and easy way to monitor energy, but the cost can sometimes be high. On the other hand, viscosity is regarded as one of the key indicators of melt quality in the polymer extrusion process. Unfortunately, viscosity cannot be measured directly using current sensory technology. The employment of on-line, in-line or off-line rheometers is sometimes useful, but these instruments either involve signal delay or cause flow restrictions to the extrusion process, which is obviously not suitable for real-time monitoring and control in practice. In this paper, simple and accurate real-time energy monitoring methods are developed. This is achieved by looking inside the controller, and using control variables to calculate the power consumption. For viscosity monitoring, a ‘soft-sensor’ approach based on an RBF neural network model is developed. The model is obtained through a two-stage selection and differential evolution, enabling compact and accurate solutions for viscosity monitoring. The proposed monitoring methods were tested and validated on a Killion KTS-100 extruder, and the experimental results show high accuracy compared with traditional monitoring approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is to develop a new generation of extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. The variations in MFI are due to differences in the source of the recycled material used. The work describes how melt viscosity for specific extruder/die system is calculated in real time using the rheological properties of the materials, the pressure drop through the extruder die and the actual throughput measurements using a gravimetric loss-in-weight hopper feeder. A closed-loop controller is also developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. Such a system will improve processability of mixed MFI polymers may also reduce the risk of polymer melt degradation, reduce producing large volumes of scrap/waste and lead to improvement in product quality. The experimental results of real time viscosity measurement and control using a 38 mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stability is of major importance in polymer extrusion, where product quality is dependent upon the level of melt homogeneity achieved by the extruder screw. Extrusion is an energy intensive process and optimisation of process energy usage while maintaining melt stability is necessary in order to produce good quality product at low unit cost. Optimisation of process energy usage is timely as world energy prices have increased rapidly over the last few years. In the first part of this study, a general discussion was made on the efficiency of an extruder. Then, an attempt was made to explore correlations between melt thermal stability and energy demand in polymer extrusion under different process settings and screw geometries. A commodity grade of polystyrene was extruded using a highly instrumented single screw extruder, equipped with energy consumption and melt temperature field measurement. Moreover, the melt viscosity of the experimental material was observed by using an off-line rheometer. Results showed that specific energy demand of the extruder (i.e. energy for processing of unit mass of polymer) decreased with increasing throughput whilst fluctuation in energy demand also reduced. However, the relationship between melt temperature and extruder throughput was found to be complex, with temperature varying with radial position across the melt flow. Moreover, the melt thermal stability deteriorated as throughput was increased, meaning that a greater efficiency was achieved at the detriment of melt consistency. Extruder screw design also had a significant effect on the relationship between energy consumption and melt consistency. Overall, the relationship between the process energy demand and thermal stability seemed to be negatively correlated and also it was shown to be highly complex in nature. Moreover, the level of process understanding achieved here can help to inform selection of equipment and setting of operating conditions to optimise both energy and thermal efficiencies in parallel. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of active frequency selective surface (AFSS) is proposed to realise a voltage controlled bi-state (transparent and reflecting) response at the specified frequencies. The bi-state switching is achieved by combining a passive array of interleaved spiral slots in conducting screens and active dipole arrays with integrated pin diodes at the opposite sides of a thin dielectric substrate. Simulation results show that such active surfaces have high isolation between the transparency and reflection states, while retaining the merits of substantially sub-wavelength response of the unit cell and large fractional bandwidths (FBWs) inherent to the original passive interwoven spiral arrays. Potential applications include reconfigurable and controllable electromagnetic architecture of buildings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interweaving planar spiral conductors in doubly periodic arrays enable substantially sub-wavelength resonant response along with broadening fractional bandwidth. A self-contained analytical model is proposed to accurately predict the characteristics of the intertwined quadrifilar spiral array near the fundamental resonance. The model, based upon a multiconductor transmission line (MTL) approach, provides physical insight into the unique properties of the distributed interactions between the interleaved counter-wound spiral arms extended beyond a single unit cell and elucidates the mechanisms underlying the array performance at normal and oblique incidence of TE and TM polarised waves. The developed MTL model is instrumental in the design of the artificial surfaces with the specified response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconfigurable bi-state interwoven spiral FSSs are explored in this work. Their switching capability is realized by pin diodes that enable the change of the electromagnetic response between transparent and reflecting modes at the specified frequencies in both singly and dual polarised unit cell configurations. The proposed topologies are single layer FSS with their elements acting also as dc current carrying conductors supplying the bias signal for switching pin diodes between the on and off states, thus avoiding the need of external bias lines that can cause parasitic resonances and affect the response at oblique incidence. The presented simulation results show that such active FSSs have potentially good isolation between the transmission and reflection states, while retaining the substantially subwavelength response of the unit cell with large fractional bandwidths (FBWs) inherent to the original passive FSSs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high impedance metasurface (HIMS) composed of the arrays of intertwined planar spirals on thin (~0.1λ) ferrite-dielectric substrate is proposed. The HIMS exhibits fractional bandwidth in excess of 10% and excellent angular and polarisation stability of the circular polarised waves at oblique incidence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of a backing cavity composed of a frequency selective surface (FSS) above a metal plate as a means to suppress the back lobe radiation and increase the gain of an Archimedean spiral antenna that operates from 3 to 10 GHz is investigated. The FSS is designed to reflect signals in the upper band (7-10 GHz) with a loss of <;0.25 dB, and allow transmission in the lower band (3-6 GHz). Good impedance match and bidirectional to unidirectional beam transformation is obtained when the FSS and metal plate are inserted at a distance λ/4 below the spiral at the centre of the upper and lower bands, respectively. Simulated and measured radiation patterns are employed to show the performance enhancement, which is attributed to the FSS reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extrusion is one of the fundamental production methods in the polymer processing industry and is used in the production of a large number of commodities in a diverse industrial sector. Being an energy intensive production method, process energy efficiency is one of the major concerns and the selection of the most energy efficient processing conditions is a key to reducing operating costs. Usually, extruders consume energy through the drive motor, barrel heaters, cooling fans, cooling water pumps, gear pumps, etc. Typically the drive motor is the largest energy consuming device in an extruder while barrel/die heaters are responsible for the second largest energy demand. This study is focused on investigating the total energy demand of an extrusion plant under various processing conditions while identifying ways to optimise the energy efficiency. Initially, a review was carried out on the monitoring and modelling of the energy consumption in polymer extrusion. Also, the power factor, energy demand and losses of a typical extrusion plant were discussed in detail. The mass throughput, total energy consumption and power factor of an extruder were experimentally observed over different processing conditions and the total extruder energy demand was modelled empirically and also using a commercially available extrusion simulation software. The experimental results show that extruder energy demand is heavily coupled between the machine, material and process parameters. The total power predicted by the simulation software exhibits a lagging offset compared with the experimental measurements. Empirical models are in good agreement with the experimental measurements and hence these can be used in studying process energy behaviour in detail and to identify ways to optimise the process energy efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grinding solid reagents under solvent-free or low-solvent conditions (mechanochemistry) is emerging as a general synthetic technique which is an alternative to conventional solvent-intensive methods. However, it is essential to find ways to scale-up this type of synthesis if its promise of cleaner manufacturing is to be realised. Here, we demonstrate the use of twin screw and single screw extruders for the continuous synthesis of various metal complexes, including Ni(salen), Ni(NCS)(2)(PPh3)(2) as well as the commercially important metal organic frameworks (MOFs) Cu-3(BTC)(2) (HKUST-1), Zn(2-methylimidazolate)(2) (ZIF-8, MAF-4) and Al(fumarate)(OH). Notably, Al(fumarate)(OH) has not previously been synthesised mechanochemically. Quantitative conversions occur to give products at kg h(-1) rates which, after activation, exhibit surface areas and pore volumes equivalent to those of materials produced by conventional solvent-based methods. Some reactions can be performed either under completely solvent-free conditions whereas others require the addition of small amounts of solvent (typically 3-4 mol equivalents). Continuous neat melt phase synthesis is also successfully demonstrated by both twin screw and single screw extrusion for ZIF-8. The latter technique provided ZIF-8 at 4 kg h(-1). The space time yields (STYs) for these methods of up to 144 x 10(3) kg per m(3) per day are orders of magnitude greater than STYs for other methods of making MOFs. Extrusion methods clearly enable scaling of mechanochemical and melt phase synthesis under solvent-free or low-solvent conditions, and may also be applied in synthesis more generally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports the performance of an Archimedean spiral antenna, which exhibits unidirectional circularly polarized radiation patterns with a peak gain >8 dBic in the lower (2.4–2.485 GHz) and upper (5.15–5.35 and 5.725–5.875 GHz) Wireless local area network frequency bands. The required backlobe suppression and impedance match are obtained by placing a multiresonant high impedance surface (HIS) in close proximity to the radiating aperture. Simulated and measured radiation patterns are shown at the center frequency of all three channels and a comparison of the key performance metrics is made with free space and metal backed antenna arrangements to demonstrate the enhancements which are attributed to the HIS reflector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viscosity represents a key indicator of product quality in polymer extrusion but has traditionally been difficult to measure in-process in real-time. An innovative, yet simple, solution to this problem is proposed by a Prediction-Feedback observer mechanism. A `Prediction' model based on the operating conditions generates an open-loop estimate of the melt viscosity; this estimate is used as an input to a second, `Feedback' model to predict the pressure of the system. The pressure value is compared to the actual measured melt pressure and the error used to correct the viscosity estimate. The Prediction model captures the relationship between the operating conditions and the resulting melt viscosity and as such describes the specific material behavior. The Feedback model on the other hand describes the fundamental physical relationship between viscosity and extruder pressure and is a function of the machine geometry. The resulting system yields viscosity estimates within 1% error, shows excellent disturbance rejection properties and can be directly applied to model-based control. This is of major significance to achieving higher quality and reducing waste and set-up times in the polymer extrusion industry.