95 resultados para micro-raman spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hierarchical nanoparticle strategy to simultaneously gain super Raman signal amplification, high uniformity, and reproducibility is presented. Using hollow Au-Ag alloy nanourchins, an ultrahigh sensitivity, e.g., down to 1 fM concentrations for DEHP molecule is obtained. A small standard deviation of <10% is achieved by simply dropping and evaporating sub-100 nm nanourchins onto a substrate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large, thin (50 mu m) dry polymer sheets containing numerous surface-enhanced Raman spectroscopy (SERS) active Ag nanopartide aggregates have been prepared by drying aqueous mixtures of hydroxyethylcelloulose (HEC) and preaggregated Ag colloid in 10 x 10 cm molds. In these dry films, the particle aggregates are protected from the environment during storage and are easy to handle; for example, they can be cut to size with scissors. When in use, the highly swellable HEC polymer allowed the films to rapidly absorb aqueous analyte solutions while simultaneously releasing the Ag nanoparticle aggregates to interact with the analyte and generate large SERS signals. Either the films could be immersed in the analyte solution or 5 mu L droplets were applied to the surface; in the latter method, the local swelling caused the active area to dome upward, but the swollen film remained physically robust and could be handled as required. Importantly, encapsulation and release did not significantly compromise the SERS performance of the colloid; the signals given by the swollen films were similar to the very high signals obtained from the parent citrate-reduced colloid and were an order of magnitude larger than a commercially available nanoparticle substrate. These "Poly-SERS" films retained 70% of their SERS activity after being stored for 1 year in air. The films were sufficiently homogeneous to give a standard deviation of 3.2% in the absolute signal levels obtained from a test analyte, primarily due to the films' ability to suppress "coffee ring" drying marks, which meant that quantitative analysis without an internal standard was possible. The majority of the work used aqueous thiophenol as the test analyte; however, preliminary studies showed that the Poly-SERS films could also be used with nonaqueous solvents and for a range of other analytes including theophylline, a therapeutic drug, at a concentration as low as 1.0 x 10(-5) mol dm(-3) (1.8 mg/dm(3)), well below the sensitivity required for theophylline monitoring where the target range is 10-20 mg/dm(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Raman and anti-stokes Raman spectroscopy to investigate the effect of exposure to high power laser radiation on the crystalline phases of TiO2 has been investigated. Measurement of the changes, over several time integrals, in the Raman and anti-stokes Raman of TiO2 spectra with exposure to laser radiation is reported. Raman and anti-stokes Raman provide detail on both the structure and the kinetic process of changes in crystalline phases in the titania material. The effect of laser exposure resulted in the generation of increasing amounts of the rutile crystalline phase from the anatase crystalline phase during exposure. The Raman spectra displayed bands at 144 cm-1 (A1g), 197 cm-1 (Eg), 398 cm-1 (B1g), 515 cm-1 (A1g), and 640 cm-1 (Eg) assigned to anatase which were replaced by bands at 143 cm-1 (B1g), 235 cm-1 (2 phonon process), 448 cm-1 (Eg) and 612 cm-1 (A1g) which were assigned to rutile. This indicated that laser irradiation of TiO2 changes the crystalline phase from anatase to rutile. Raman and anti-stokes Raman are highly sensitive to the crystalline forms of TiO2 and allow characterisation of the effect of laser irradiation upon TiO2. This technique would also be applicable as an in situ method for monitoring changes during the laser irradiation process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modification of citrate and hydroxylamine reduced Ag colloids with thiocholine bromide, a thiol functionalized quaternary ammonium salt, creates particles where the zeta potential is switched from the normal values of ca. -50 mV to ca. + 50 mV. These colloids are stable but can be aggregated with metal salts in much the same way as the parent colloids. They are excellent SERS substrates for detection of anionic targets since their positive zeta potentials promote adsorption of negatively charged ions. This is important because the vast majority of published SERS studies involve cationic or neutral targets. Moreover, the fact that the modifier is a quaternary ammonium ion means that the negative surface charge is maintained even at alkaline pH. The modified colloids can be used to detect compounds which cannot be detected using conventional negatively-charged citrate or hydroxylamine reduced metal nanoparticles, for example the detection limit was 5.0 x 10(-5) M for perchlorate and

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE. Raman spectroscopy is an effective probe of advanced glycation end products (AGEs) in Bruch's membrane. However, because it is the outermost layer of the retina, this extracellular matrix is difficult to analyze in vivo with current technology. The sclera shares many compositional characteristics with Bruch's membrane, but it is much easier to access for in vivo Raman analysis. This study investigated whether sclera could act as a surrogate tissue for Raman-based investigation of pathogenic AGEs in Bruch's membrane.

METHODS. Human sclera and Bruch's membrane were dissected from postmortem eyes (n = 67) across a wide age range (33-92 years) and were probed by Raman spectroscopy. The biochemical composition, AGEs, and their age-related trends were determined from data reduction of the Raman spectra and compared for the two tissues.

RESULTS. Raman microscopy demonstrated that Bruch's membrane and sclera are composed of a similar range of biomolecules but with distinct relative quantities, such as in the heme/collagen and the elastin/collagen ratios. Both tissues accumulated AGEs, and these correlated with chronological age (R(2) = 0.824 and R(2) = 0.717 for sclera and Bruch's membrane, respectively). The sclera accumulated AGE adducts at a lower rate than Bruch's membrane, and the models of overall age-related changes exhibited a lower rate (one-fourth that of Bruch's membrane) but a significant increase with age (P <0.05).

CONCLUSIONS. The results suggest that the sclera is a viable surrogate marker for estimating AGE accumulation in Bruch's membrane and for reliably predicting chronological age. These findings also suggest that sclera could be a useful target tissue for future patient-based, Raman spectroscopy studies. (Invest Ophthalmol Vis Sci 2011;52:1593-1598) DOI:10.1167/iovs.10-6554

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface-enhanced Raman spectroscopy (SERS) is now widely used as a rapid and inexpensive tool for chemical/biochemical analysis. The method can give enormous increases in the intensities of the Raman signals of low-concentration molecular targets if they are adsorbed on suitable enhancing substrates, which are typically composed of nanostructured Ag or Au. However, the features of SERS that allow it to be used as a chemical sensor also mean that it can be used as a powerful probe of the surface chemistry of any nanostructured material that can provide SERS enhancement. This is important because it is the surface chemistry that controls how these materials interact with their local environment and, in real applications, this interaction can be more important than more commonly measured properties such as morphology or plasmonic absorption. Here, the opportunity that this approach to SERS provides is illustrated with examples where the surface chemistry is both characterized and controlled in order to create functional nanomaterials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large (10 × 10 cm) sheets of surface-enhanced Raman spectroscopy (SERS) active polymer have been prepared by stabilising metal nanoparticle aggregates within dry hydroxyethylcellulose (HEC) films. In these films the aggregates are protected by the polymer matrix during storage but in use they are released when aqueous analyte droplets cause the films to swell to their gel form. The fact that these "Poly-SERS" films can be prepared in bulk but then cut to size and stored in air before use means that they provide a cost effective and convenient method for routine SERS analysis. Here we have tested both Ag and Au Poly-SERS films for use in point-of-care monitoring of therapeutic drugs, using phenytoin as the test compound. Phenytoin in water could readily be detected using Ag Poly-SERS films but dissolving the compound in phosphate buffered saline (PBS) to mimic body fluid samples caused loss of the drug signal due to competition for metal surface sites from Cl- ions in the buffer solution. However, with Au Poly-SERS films there was no detectable interference from Cl- and these materials allowed phenytoin to be detected at 1.8 mg L-1, even in PBS. The target range of detection of phenytoin in therapeutic drug monitoring is 10-20 mg L-1. With the Au Poly-SERS films, the absolute signal generated by a given concentration of phenytoin was lower for the films than for the parent colloid but the SERS signals were still high enough to be used for therapeutic monitoring, so the cost in sensitivity for moving from simple aqueous colloids to films is not so large that it outweighs the advantages which the films bring for practical applications, in particular their ease of use and long shelf life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A set of seized "legal high'' samples and pure novel psychoactive substances have been examined by surface-enhanced Raman spectroscopy using polymer-stabilized Ag nanoparticle (Poly-SERS) films. The films both quenched fluorescence in bulk samples and allowed identification of mu g quantities of drugs collected with wet swabs from contaminated surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on the geochemical and mineralogical characterization of a lateritic profile cropping out in the Balkouin area, Central Burkina Faso, aimed at obtaining a better understanding of the processes responsible for the formation of the laterite itself and the constraints to its development. The lateritic profile rests on a Paleoproterozoic basement mostly composed of granodioritic rocks related to the Eburnean magmatic cycle passing upwards to saprolite and consists of four main composite horizons (bottom to top): kaolinite and clay-rich horizons, mottled laterite and iron-rich duricrust. In order to achieve such a goal, a multi-disciplinary analytical approach was adopted, which includes inductively coupled plasma (ICP) atomic emission and mass spectrometries (ICP-AES and ICP-MS respectively), X-ray powder diffraction (XRPD), scanning electron microscopy with energy dispersive spectrometry (SEM-EDS) and micro-Raman spectroscopy.

The geochemical data, and particularly the immobile elements distribution and REE patterns, show that the Balkouin laterite is the product of an in situ lateritization process that involved a strong depletion of the more soluble elements (K, Mg, Ca, Na, Rb, Sr and Ba) and an enrichment in Fe; Si was also removed, particularly in the uppermost horizons. All along the profile the change in composition is coupled with important changes in mineralogy. In particular, the saprolite is characterized by occurrence of abundant albitic plagioclase, quartz and nontronite; kaolinite is apparently absent. The transition to the overlying lateritic profile marks the breakdown of plagioclase and nontronite, thus allowing kaolinite to become one of the major components upwards, together with goethite and quartz. The upper part of the profile is strongly enriched in hematite (+ kaolinite). Ti oxides (at least in part as anatase) and apatite are typical accessory phases, while free aluminum hydroxides are notably absent. Mass change calculations emphasize the extent of the mass loss, which exceeds 50 wt% (and often 70 wt%) for almost all horizons; only Fe was significantly concentrated in the residual system.

The geochemical and mineralogical features suggest that the lateritic profile is the product of a continuous process that gradually developed from the bedrock upwards, in agreement with the Schellmann classic genetic model. The laterite formation must have occurred at low pH (? 4.5) and high Eh (? 0.4) values, i.e., under acidic and oxidizing environments, which allowed strongly selective leaching conditions. The lack of gibbsite and bohemite is in agreement with the compositional data: the occurrence of quartz (± amorphous silica) all along the profile was an inhibiting factor for the formation of free aluminum hydroxides.