72 resultados para high-resistant material


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the impact of restricting high-risk antibiotics on methicillin-resistant Staphylococcus aureus (MRSA) incidence rates in a hospital setting. A secondary objective was to assess the impact of reducing fluoroquinolone use in the primary-care setting on MRSA incidence in the community. This was an interventional, retrospective, ecological investigation in both hospital and community (January 2006 to June 2010). Segmented regression analysis of interrupted time-series was employed to evaluate the intervention. The restriction of high-risk antibiotics was associated with a significant change in hospital MRSA incidence trend (coefficient=-0·00561, P=0·0057). Analysis showed that the intervention relating to reducing fluoroquinolone use in the community was associated with a significant trend change in MRSA incidence in community (coefficient=-0·00004, P=0·0299). The reduction in high-risk antibiotic use and fluoroquinolone use contributed to both a reduction in incidence rates of MRSA in hospital and community (primary-care) settings. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a similar to 3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extrusion is one of the major methods for processing polymeric materials and the thermal homogeneity of the process output is a major concern for manufacture of high quality extruded products. Therefore, accurate process thermal monitoring and control are important for product quality control. However, most industrial extruders use single point thermocouples for the temperature monitoring/control although their measurements are highly affected by the barrel metal wall temperature. Currently, no industrially established thermal profile measurement technique is available. Furthermore, it has been shown that the melt temperature changes considerably with the die radial position and hence point/bulk measurements are not sufficient for monitoring and control of the temperature across the melt flow. The majority of process thermal control methods are based on linear models which are not capable of dealing with process nonlinearities. In this work, the die melt temperature profile of a single screw extruder was monitored by a thermocouple mesh technique. The data obtained was used to develop a novel approach of modelling the extruder die melt temperature profile under dynamic conditions (i.e. for predicting the die melt temperature profile in real-time). These newly proposed models were in good agreement with the measured unseen data. They were then used to explore the effects of process settings, material and screw geometry on the die melt temperature profile. The results showed that the process thermal homogeneity was affected in a complex manner by changing the process settings, screw geometry and material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impending and increasing threat of antimicrobial resistance has led to a greater focus into developing alternative therapies as substitutes for traditional antibiotics for the treatment of multi-drug resistant infections.1 Our group has developed a library of short, cost-effective, diphenylalanine-based peptides (X1-FF-X2) which selective eradicate (viability reduced >90% in 24 hours) the most resistant biofilm forms of a range of Gram-positive and negative pathogens including: methicillin resistant and sensitive Staphyloccoccus aureus and Staphyloccoccus epidermidis; Pseudomonas aeruginosa, Proteus mirabilis and Escherichia coli. They demonstrate a reduced cell cytotoxic profile (NCTC929 murine fibroblast) and limited haemolysis.2 Our molecules have the ability respond to subtle changes in pH, associated with bacterial infection, self-assembling to form β-sheet secondary structures and supramolecular hydrogels at low concentrations (~0.5%w/v). Conjugation of variety of aromatic-based drugs at the X1 position, including non-steroidal anti-inflammatories (NSAIDs), confer further pharmacological properties to the peptide motif enhancing their therapeutic potential. In vivo studies using waxworms (Galleria mellonella) provide promising preliminary results demonstrating the low toxicity and high antimicrobial activity of these low molecular weight gelators in animal models. This work shows biofunctional peptide-based nanomaterials hold great promise for future translation to patients as antimicrobial drug delivery and biomaterial platforms.3 [1] G. Laverty, S.P. Gorman and B.F. Gilmore. Int.J.Mol.Sci. 2011, 12, 6566-6596. [2] G. Laverty, A.P. McCloskey, B.F. Gilmore, D.S. Jones, J Zhou, B Xu. Biomacromolecules. 2014, 15, 9, 3429-3439. [3] A.P. McCloskey, B.F. Gilmore and G.Laverty. Pathogens. 2014, 3, 791-821.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The creation of large magnetic fields is a necessary component in many technologies, ranging from magnetic resonance imaging, electric motors and generators, and magnetic hard disk drives in information storage. This is typically done by inserting a ferromagnetic pole piece with a large magnetisation density MS in a solenoid. In addition to large MS, it is usually required or desired that the ferromagnet is magnetically soft and has a Curie temperature well above the operating temperature of the device. A variety of ferromagnetic materials are currently in use, ranging from FeCo alloys in, for example, hard disk drives, to rare earth metals operating at cryogenic temperatures in superconducting solenoids. These latter can exceed the limit on MS for transition metal alloys given by the Slater-Pauling curve. This article reviews different materials and concepts in use or proposed for technological applications that require a large MS, with an emphasis on nanoscale material systems, such as thin and ultra-thin films. Attention is also paid to other requirements or properties, such as the Curie temperature and magnetic softness. In a final summary, we evaluate the actual applicability of the discussed materials for use as pole tips in electromagnets, in particular, in nanoscale magnetic hard disk drive read-write heads; the technological advancement of the latter has been a very strong driving force in the development of the field of nanomagnetism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Poor water-solubility of BCS class II drugs can limit their commercialization because of reduced oral bioavailability. It has been reported that loading of drug by adsorption onto porous silica would enhance drug solubility due to the increased surface area available for solvent diffusion. In this work, solid dispersions are formed using supercritical carbon dioxide (scCO2). The aim of this research was to characterise the solid-state properties of scCO2 dispersion and to investigate the impact of altering scCO2 processing conditions on final amorphous product performance that could lead to enhancement of drug dissolution rate for BCS class II drugs. Methods Indomethacin (IND) was purchased from Sigma-Aldrich (Dorset, UK) and was used as a model drug with two grades of high surface area silica (average particle sizes 3&[micro] and 7&[micro]), which were obtained directly from Grace-Davison (Germany). Material crystallinity was evaluated using powder X-ray diffraction (PXRD, Rigaku™, miniflex II, Japan) and high-speed differential scanning calorimetry (Hyper-DSC 8000, Perkin Elmer, USA). Materials were placed in a high-pressure vessel consisting of a CO2 cylinder, a Thar™ Technologies P50 high-pressure pump and a 750 ml high-pressure vessel (Thar, USA). Physical mixtures were exposed to CO2 gas above its critical conditions. SEM imaging and elemental analysis were conducted using a Jeol 6500 FEGSEM (Advanced MicroBeam Inc., Austria). Drug release was examined using USP type II dissolution tester (Caleva™, UK). Results The two grades of silica were found to be amorphous using PXRD and Hyper-DSC. Using PXRD, it was shown that an increase in incubation time and pressure resulted in a decrease in the crystalline content. Drug release profiles from the two different silica formulations prepared under the same conditions are shown in Figure 1. It was found that there was a significant enhancement in drug release, which was influenced, by silica type and other experiment conditions such as temperature, pressure and exposure time. SEM imaging and elemental analysis showed drug deposited inside silica pores as well as on the outer surface. Conclusion This project has shown that silica carrier platforms may be used as an alternative approach to generating polymeric solid dispersions of amorphous drugs exhibiting enhanced solubility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Bone metastases frequently cause skeletal events in patients with metastatic castration-resistant prostate cancer. Radium-223 dichloride (radium-223) selectively targets bone metastases with high-energy, short-range α-particles. We assessed the effect of radium-223 compared with placebo in patients with castration-resistant prostate cancer and bone metastases.

METHODS: In this phase 3, double-blind, randomised ALSYMPCA trial, we enrolled patients who had symptomatic castration-resistant prostate cancer with two or more bone metastases and no known visceral metastases, who were receiving best standard of care, and had previously either received or were unsuitable for docetaxel. Patients were stratified by previous docetaxel use, baseline total alkaline phosphatase level, and current bisphosphonate use, then randomly assigned (2:1) to receive either six intravenous injections of radium-223 (50 kBq/kg) or matching placebo; one injection was given every 4 weeks. Randomisation was done with an interactive voice response system, taking into account trial stratification factors. Participants and investigators were masked to treatment assignment. The primary endpoint was overall survival, which has been reported previously. Here we report on time to first symptomatic skeletal event, defined as the use of external beam radiation to relieve bone pain, or occurrence of a new symptomatic pathological fracture (vertebral or non-verterbal), or occurence of spinal cord compression, or tumour-related orthopeadic surgical intervention. All events were required to be clinically apparent and were not assessed by periodic radiological review. Statistical analyses of symptomatic skeletal events were based on the intention-to-treat population. The study has been completed and is registered with ClinicalTrials.gov, number NCT00699751.

FINDINGS: Between June 12, 2008, and Feb 1, 2011, 921 patients were enrolled, of whom 614 (67%) were randomly assigned to receive radium-223 and 307 (33%) placebo. Symptomatic skeletal events occurred in 202 (33%) of 614 patients in the radium-223 group and 116 (38%) of 307 patients in the placebo group. Time to first symptomatic skeletal event was longer with radium-223 than with placebo (median 15·6 months [95% CI 13·5-18·0] vs 9·8 months [7·3-23·7]; hazard ratio [HR]=0·66, 95% CI 0·52-0·83; p=0·00037). The risks of external beam radiation therapy for bone pain (HR 0·67, 95% CI 0·53-0·85) and spinal cord compression (HR=0·52, 95% CI 0·29-0·93) were reduced with radium-233 compared with placebo. Radium-223 treatment did not seem to significantly reduce the risk of symptomatic pathological bone fracture (HR 0·62, 95% CI 0·35-1·09), or the need for tumour-related orthopaedic surgical intervention (HR 0·72, 95% CI 0·28-1·82).

INTERPRETATION: Radium-223 should be considered as a treatment option for patients with castration-resistant prostate cancer and symptomatic bone metastases.

FUNDING: Algeta and Bayer HealthCare Pharmaceuticals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher expression of the miR-433 microRNA (miRNA) is associated with poorer survival outcomes in patients with HGSOC that may be overcome by a greater understanding of the functional role of this miRNA. We previously described miR-433 as a critical cell cycle regulator and mediator of cellular senescence. Downregulation of the mitotic arrest deficiency 2 (MAD2) protein by miR-433 led to increased cellular resistance to paclitaxel in epithelial ovarian cancer cells (EOC). Furthermore immunohistochemical (IHC) analysis of MAD2 expression in patients with HGSOC showed that loss of MAD2 was significantly associated with poorer patient survival. Higher miR-433 expression is also associated with an increased resistance to the platins which is unrelated to loss of MAD2 expression. In silico analysis of the miR-433 target proteins in the TCGA database identified the association between a number of miR-433 targets and poorer patient survival. IHC analysis of the miR-433 target, histone deacetylase 6 (HDAC6), confirmed that its expression was significantly associated with a decrease in patient overall survival. The knock-down of HDAC6 by siRNA in EOC cells did not attenuate apoptotic responses to paclitaxel or platin although lower endogenous HDAC6 expression was associated with more resistant EOC cell lines. In vitro analysis revealed that EOC cells which survived chemotherapeutic kill with high doses of paclitaxel expressed higher miR-433 and concomitant decreased expression of the miR-433 targets. These cells were more chemoresistant compared to the parental cell line and repopulated as 3d organoid cultures in non-adherent stem cell selective conditions; thus indicating that the cells which survive chemotherapy were viable, capable of regrowth and had an increased potential for pluripotency. In conclusion, our data suggests that chemotherapy is not driving the transcriptional upregulation of miR-433 but rather selecting a population of cells with high miR-433 expression that may contribute to chemoresistant disease and tumour recurrence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Persistent organic pollutants (POPs) are toxic substances, highly resistant to environmental degradation, which can bio-accumulate and have long-range atmospheric transport potential. Most studies focus on single compound effects, however as humans are exposed to several POPs simultaneously, investigating exposure effects of real life POP mixtures on human health is necessary. A defined mixture of POPs was used, where the compound concentration reflected its contribution to the levels seen in Scandinavian human serum (total mix). Several sub mixtures representing different classes of POP were also constructed. The perfluorinated (PFC) mixture contained six perfluorinated compounds, brominated (Br) mixture contained seven brominated compounds, chlorinated (Cl) mixture contained polychlorinated biphenyls and also p,p'-dichlorodiphenyldichloroethylene, hexachlorobenzene, three chlordanes, three hexachlorocyclohexanes and dieldrin. Human hepatocarcinoma (HepG2) cells were used for 2h and 48h exposures to the seven mixtures and analysis on a CellInsight™ NXT High Content Screening platform. Multiple cytotoxic endpoints were investigated: cell number, nuclear intensity and area, mitochondrial mass and membrane potential (MMP) and reactive oxygen species (ROS). Both the Br and Cl mixtures induced ROS production but did not lead to apoptosis. The PFC mixture induced the ROS production and likely induced cell apoptosis accompanied by the dissipation of MMP. Synergistic effects were evident for ROS induction when cells were exposed to the PFC+Br mixture. No significant effects were detected in the Br+Cl, PFC+Cl or total mixtures, which contain the same concentrations of chlorinated compounds as the Cl mixture plus additional compounds; highlighting the need for further exploration of POP mixtures in risk assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. To explore factors potentially influencing the success or failure of rural Chinese hospitals in increasing cataract surgical output and quality. METHODS. Focus groups (FGs, n = 10) were conducted with hospital administrators, doctors, and nurses at 28 county hospitals in Guangdong Province. Discussions explored respondents' views on increasing surgical volume and quality and improving patient satisfaction. Respondents numerically ranked possible strategies to increase surgical volume and quality and patient satisfaction. FG transcripts were independently coded by two reviewers utilizing the constant comparative method following the grounded theory approach, and numerical responses were scored and ranked. RESULTS. Ten FGs and 77 ranking questionnaires were completed by 33 administrators, 23 doctors, and 21 nurses. Kappa values for the two coders were greater than 0.7 for all three groups. All groups identified a critical need for enhanced management training for hospital directors. Doctors and nurses suggested reducing surgical fees to enhance uptake, although administrators were resistant to this. Although doctors saw the need to improve equipment, administrators felt current material conditions were adequate. Respondents agreed that patient satisfaction was generally high, and did not view increasing patient satisfaction as a priority. CONCLUSIONS. Our findings highlight agreements and disagreements among the three stakeholder groups about improving surgical output and quality, which can inform strategies to improve cataract programs in rural China. Respondents' beliefs about high patient satisfaction are not in accord with other studies in the area, highlighting a potential area for intervention. © 2013 The Association for Research in Vision and Ophthalmology, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research was to design granulated iron oxide for the adsorption of heavy metals from wastewater. Polyvinyl acetate (PVAc) was chosen as a suitable binder; as it is water insoluble. Initial experiments on selection of suitable solvent of the polymer were carried out using three solvents namely; methanol, acetone and toluene. Based on the initial tests on product yield and mechanical strength, acetone was selected as the solvent for the polyvinyl acetate binder. Design of experiment was then used to investigate the influence of granulation process variables; impeller speed, binder concentration and liquid to solid ratio on the properties of the granular materials. The response variables in the study were granules mean size, stability in water and granule strength. The results showed that the combination of high impeller speed and high binder concentration favour the formation of strong and stable granules. Results also showed that leaching of the binder into the simulated was water was negligible. Trial adsorption experiments carried out using the strongest and most stable iron oxide granules produced in this work showed removal efficiency of around 70% of synthetic arsenic solutions with initial concentration of 1000 ppb.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A relatively simple, selective, precise and accurate high performance liquid chromatography (HPLC) method based on a reaction of phenylisothiocyanate (PITC) with glucosamine (GL) in alkaline media was developed and validated to determine glucosamine hydrochloride permeating through human skin in vitro. It is usually problematic to develop an accurate assay for chemicals traversing skin because the excellent barrier properties of the tissue ensure that only low amounts of the material pass through the membrane and skin components may leach out of the tissue to interfere with the analysis. In addition, in the case of glucosamine hydrochloride, chemical instability adds further complexity to assay development. The assay, utilising the PITC-GL reaction was refined by optimizing the reaction temperature, reaction time and PITC concentration. The reaction produces a phenylthiocarbamyl-glucosamine (PTC-GL) adduct which was separated on a reverse-phase (RP) column packed with 5 microm ODS (C18) Hypersil particles using a diode array detector (DAD) at 245 nm. The mobile phase was methanol-water-glacial acetic acid (10:89.96:0.04 v/v/v, pH 3.5) delivered to the column at 1 ml min-1 and the column temperature was maintained at 30 degrees C. Galactosamine hydrochloride (Gal-HCl) was used as an internal standard. Using a saturated aqueous solution of glucosamine hydrochloride, in vitro permeation studies were performed at 32+/-1 degrees C over 48 h using human epidermal membranes prepared by a heat separation method and mounted in Franz-type diffusion cells with a diffusional area 2.15+/-0.1 cm2. The optimum derivatisation reaction conditions for reaction temperature, reaction time and PITC concentration were found to be 80 degrees C, 30 min and 1% v/v, respectively. PTC-Gal and GL adducts eluted at 8.9 and 9.7 min, respectively. The detector response was found to be linear in the concentration range 0-1000 microg ml-1. The assay was robust with intra- and inter-day precisions (described as a percentage of relative standard deviation, %R.S.D.) <12. Intra- and inter-day accuracy (as a percentage of the relative error, %RE) was <or=-5.60 and <or=-8.00, respectively. Using this assay, it was found that GL-HCl permeates through human skin with a flux 1.497+/-0.42 microg cm-2 h-1, a permeability coefficient of 5.66+/-1.6x10(-6) cm h-1 and with a lag time of 10.9+/-4.6 h.