116 resultados para complement regulator factor H related protein


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Age-related macular degeneration (AMD) is the major cause of blindness in the elderly. Those with the neovascular end-stage of disease have irreversible loss of central vision. AMD is a complex disorder in which genetic and environmental factors play a role. Polymorphisms in the complement factor H (CFH) gene, LOC387715, and the HTRA1 promoter are strongly associated with AMD. Smoking also contributes to the etiology. We aimed to provide a model of disease risk based on these factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PITSLRE protein kinases are parts of the large family of p34cdc2-related kinases. During apoptosis induced by some stimuli, specific PITSLRE isoforms are cleaved by caspase to produce a protein that contains the C-terminal kinase domain of the PITSLRE proteins (p110C). The p110C induces apoptosis when it is ectopically expressed in Chinese hamster ovary cells. In our study, similar induction of this p110C was observed during anoikis in NIH3T3 cells. To investigate the molecular mechanism of apoptosis mediated by p110C, we used the yeast two-hybrid system to screen a human fetal liver cDNA library and identified p21-activated kinase 1 (PAK1) as an interacting partner of p110C. The association of p110C with PAK1 was further confirmed by in vitro binding assay, in vivo coimmunoprecipitation, and confocal microscope analysis. The interaction of p110C with PAK1 occurred within the residues 210-332 of PAK1. Neither association between p58PITSLRE or p110PITSLRE and PAK1 nor association between p110C and PAK2 or PAK3 was observed. Anoikis was increased and PAK1 activity was inhibited when NIH3T3 cells were transfected with p110C. Furthermore, the binding of p110C with PAK1 and inhibition of PAK1 activity were also observed during anoikis. Taken together, these data suggested that PAK1 might participate in the apoptotic pathway mediated by p110C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of the alternative sigma factor sigma B (SigB) on pathogenesis of Staphylococcus aureus is not conclusively clarified. In this study, a central venous catheter (CVC) related model of multiorgan infection was used to investigate the role of SigB for the pathogenesis of S. aureus infections and biofilm formation in vivo. Analysis of two SigB-positive wild-type strains and their isogenic mutants revealed uniformly that the wild-type was significantly more virulent than the SigB-deficient mutant. The observed difference in virulence was apparently not linked to the capability of the strains to form biofilms in vivo since wild-type and mutant strains were able to produce biofilm layers inside of the catheter. The data strongly indicate that the alternative sigma factor SigB plays a role in CVC-associated infections caused by S. aureus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The molecular pathogenesis of diabetic nephropathy (DN), the leading cause of end-stage renal disease worldwide, is complex and not fully understood. Transforming growth factor-beta (TGF-beta1) plays a critical role in many fibrotic disorders, including DN. In this study, we report protein kinase B (PKB/Akt) activation as a downstream event contributing to the pathophysiology of DN. We investigated the potential of PKB/Akt to mediate the profibrotic bioactions of TGF-beta1 in kidney. Treatment of normal rat kidney epithelial cells (NRK52E) with TGF-beta1 resulted in activation of phosphatidylinositol 3-kinase (PI3K) and PKB/Akt as evidenced by increased Ser473 phosphorylation and GSK-3beta phosphorylation. TGF-beta1 also stimulated increased Smad3 phosphorylation in these cells, a response that was insensitive to inhibition of PI3K or PKB/Akt. NRK52E cells displayed a loss of zona occludins 1 and E-cadherin and a gain in vimentin and alpha-smooth muscle actin expression, consistent with the fibrotic actions of TGF-beta1. These effects were blocked with inhibitors of PI3K and PKB/Akt. Furthermore, overexpression of PTEN, the lipid phosphatase regulator of PKB/Akt activation, inhibited TGF-beta1-induced PKB/Akt activation. Interestingly, in the Goto-Kakizaki rat model of type 2 diabetes, we also detected increased phosphorylation of PKB/Akt and its downstream target, GSK-3beta, in the tubules, relative to that in control Wistar rats. Elevated Smad3 phosphorylation was also detected in kidney extracts from Goto-Kakizaki rats with chronic diabetes. Together, these data suggest that TGF-beta1-mediated PKB/Akt activation may be important in renal fibrosis during diabetic nephropathy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The PKB (protein kinase B, also called Akt) family of protein kinases plays a key role in insulin signaling, cellular survival, and transformation. PKB is activated by phosphorylation on residues threonine 308, by the protein kinase PDK1, and Serine 473, by a putative serine 473 kinase. Several protein binding partners for PKB have been identified. Here, we describe a protein partner for PKB alpha termed CTMP, or carboxyl-terminal modulator protein, that binds specifically to the carboxyl-terminal regulatory domain of PKB alpha at the plasma membrane. Binding of CTMP reduces the activity of PKB alpha by inhibiting phosphorylation on serine 473 and threonine 308. Moreover, CTMP expression reverts the phenotype of v-Akt-transformed cells examined under a number of criteria including cell morphology, growth rate, and in vivo tumorigenesis. These findings identify CTMP as a negative regulatory component of the pathway controlling PKB activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This review aims to summarise our knowledge to date on the protein complement of the synovial fluid (S F). The tissues, structure and pathophysiology of the synovial joint are briefly described. The salient features of the S F proteome, how it is composed and the influence of arthritic disease are highlighted and discussed. The concentrations of proteins that have been detected and quantified in SF are drawn together from the literature on osteoarthritis, rheumatoid arthritis and juvenile idiopathic arthritis. The measurements are plotted to give a perspective on the dynamic range of protein levels within the SF. Approaches to proteomic analysis of SF to date are discussed along with their findings. From the recent literature reviewed within, it is becoming increasingly clear that analysis of the SF proteome as a whole, could deliver the most valuable differential diagnostic fingerprints of a number of arthritic disorders. Further development of proteomic platforms could characterise prognostic profiles to improve the cliniciads ability to resolve unremitting disease by existing and novel therapeutics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin-like growth factor-I (IGF-I) signaling is strongly associated with cell growth and regulates the rate of synthesis of the rRNA precursor, the first and the key stage of ribosome biogenesis. In a screen for mediators of IGF-I signaling in cancer, we recently identified several ribosome-related proteins, including NEP1 (nucleolar essential protein 1) and WDR3 (WD repeat 3), whose homologues in yeast function in ribosome processing. The WDR3 gene and its locus on chromosome 1p12-13 have previously been linked with malignancy. Here we show that IGF-I induces expression of WDR3 in transformed cells. WDR3 depletion causes defects in ribosome biogenesis by affecting 18 S rRNA processing and also causes a transient down-regulation of precursor rRNA levels with moderate repression of RNA polymerase I activity. Suppression of WDR3 in cells expressing functional p53 reduced proliferation and arrested cells in the G1 phase of the cell cycle. This was associated with activation of p53 and sequestration of MDM2 by ribosomal protein L11. Cells lacking functional p53 did not undergo cell cycle arrest upon suppression of WDR3. Overall, the data indicate that WDR3 has an essential function in 40 S ribosomal subunit synthesis and in ribosomal stress signaling to p53-mediated regulation of cell cycle progression in cancer cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To investigate the effect(s) of cataract surgery on the expression of pro-inflammatory genes and proteins in the retina using an experimental rodent model. An extracapsular lens extraction was performed in one eye of C57BL/6 mice (n=24); the contralateral unoperated eyes (n =24) as well as eyes from unoperated animals (n = 9) served as controls. The neurosensory retina and retinal pigment epithelium (RPE)/choroid were collected postoperatively. Expression of genes involved in the acute inflammatory/ injury response, including IL-1ß, fibroblast growth factor, transforming growth factor ß, chemokine CCL2, SDF-1, and complements C3, C4, and factor B (CFB), were examined by real-time PCR and, selectively, by immunohistochemistry. The expression of IL-1 ß and CCL2 genes was markedly upregulated (>0-fold, P >0.01) in the neurosensory retina 30 minutes postoperatively and maintained for the 2-week postoperative period of observation; IL-1 ß expression was also upregulated in RPE/choroid. The expression of complement C3 (>-fold) and CFB (>0-fold) genes in the neurosensory retina was also significantly upregulated (P

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is an increasing interest towards the mechanism by which regulators of G-protein signaling regulate signals of G-protein-coupled receptors. RGS2 is a regulator of Gq protein signaling (RGS), the N-terminal region of which is known to contain determinants for G protein-coupled receptor recognition, but its structure is still unknown. To understand the molecular basis for this recognition, the three-dimensional model of RGS2, including N-terminal region and RGS box, was modeled. For this, RGS4 box structure and data from circular dichroism study of RGS2 N-terminal region were used. Then, membrane-targeting activity of the RGS2 amphipathic helix contained in the N-terminal region was investigated. Furthermore, in cellulo study provided first evidence that an internal sequence within the N-terminal region of RGS2 is involved in RGS2 regulation of cholecystokinin receptor-2 signal. RGS2 modeled structure can now serve to study molecular recognition of RGS2 by signaling molecules. © 2006 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:



Purpose. The authors conducted an in vitro investigation of the role of Ca2+-dependent signaling in vascular endothelial growth factor (VEGF)-induced angiogenesis in the retina.

Methods. Bovine retinal endothelial cells (BRECs) were stimulated with VEGF in the presence or absence of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM; intracellular Ca2+ chelator), U73122 (phospholipase C (PLC) inhibitor), xestospongin C (Xe-C), and 2-aminoethoxydiphenyl borate (2APB) (inhibitors of inositol-1,4,5 triphosphate (IP3) signaling). Intracellular Ca2+ concentration ([Ca2+]i) was estimated using fura-2 Ca2+ microfluorometry, Akt phosphorylation quantified by Western blot analysis, and angiogenic responses assessed using cell migration, proliferation, tubulogenesis, and sprout formation assays. The effects of the Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 were also evaluated on VEGF-induced Akt signaling and angiogenic activity.

Results. Stimulation of BRECs with 25 ng/mL VEGF induced a biphasic increase in [Ca2+]i, with an initial transient peak followed by a sustained plateau phase. VEGF-induced [Ca2+]i increases were almost completely abolished by pretreating the cells with BAPTA-AM, U73122, Xe-C, or 2APB. These agents also inhibited VEGF-induced phosphorylation of Akt, cell migration, proliferation, tubulogenesis, and sprouting angiogenesis. KN93 was similarly effective at blocking the VEGF-induced activation of Akt and angiogenic responses.

Conclusions. VEGF increases [Ca2+]i in BRECs through activation of the PLC-IP3 signal transduction pathway. VEGF-induced phosphorylation of the proangiogenic protein Akt is critically dependent on this increase in [Ca2+]i and the subsequent activation of CaMKII. Pharmacologic inhibition of Ca2+-mediated signaling in retinal endothelial cells blocks VEGF-induced angiogenic responses. These results suggest that the PLC/IP3/Ca2+/CaMKII signaling pathway may be a rational target for the treatment of angiogenesis-related disorders of the eye.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Studies have suggested a link between lycopene and insulin-like growth factor-1 ( IGF-1). The aim of this study was to test the effect of lycopene supplementation on IGF-1 and binding protein-3 ( IGFBP-3) status in healthy male volunteers.