122 resultados para Unit-root
The effect of construction pattern and unit interlock on the structural behaviour of block pavements
Resumo:
The maintenance or even replacement of cracked pavements requires considerable financial resources and puts a large burden on the budgets of local councils. In addition to these costs, local councils also face liability claims arising from uneven or cracked pedestrian pavements. These currently cost the Manchester City Council and Preston City Council around £6 million a year each. Design procedures are empirical. A better understanding of the interaction between paving blocks, bedding sand and subbase was necessary in order to determine the mode of failure of pavements under load. Increasing applied stress was found to mobilise ‘‘rotational interlock’’, providing increased pavement stiffness and thus increased load dissipation resulting in lower transmitted stress on the subgrade. The indications from the literature
review were that pavements are designed to fail by excessive deformation and that paving blocks remained uncracked at failure. This was confirmed with experimental data which was obtained from tests on segments of pavements that were laid/constructed in a purpose built test frame in the laboratory.
Resumo:
We introduce the notion of a (noncommutative) C *-Segal algebra as a Banach algebra (A, {norm of matrix}{dot operator}{norm of matrix} A) which is a dense ideal in a C *-algebra (C, {norm of matrix}{dot operator}{norm of matrix} C), where {norm of matrix}{dot operator}{norm of matrix} A is strictly stronger than {norm of matrix}{dot operator}{norm of matrix} C onA. Several basic properties are investigated and, with the aid of the theory of multiplier modules, the structure of C *-Segal algebras with order unit is determined.
Resumo:
To profile the characteristics and outcomes of adult haematology patients admitted to the intensive care unit (ICU).
Resumo:
Rhizosphere microorganisms play an important role in soil carbon flow, through turnover of root exudates, but there is little information on which organisms are actively involved or on the influence of environmental conditions on active communities. In this study, a (CO2)-C-13 pulse labelling field experiment was performed in an upland grassland soil, followed by RNA-stable isotope probing (SIP) analysis, to determine the effect of liming on the structure of the rhizosphere microbial community metabolizing root exudates. The lower limit of detection for SIP was determined in soil samples inoculated with a range of concentrations of C-13-labelled Pseudomonas fluorescens and was found to lie between 10(5) and 10(6) cells per gram of soil. The technique was capable of detecting microbial communities actively assimilating root exudates derived from recent photo-assimilate in the field. Denaturing gradient gel electrophoresis (DGGE) profiles of bacteria, archaea and fungi derived from fractions obtained from caesium trifluoroacetate (CsTFA) density gradient ultracentrifugation indicated that active communities in limed soils were more complex than those in unlimed soils and were more active in utilization of recently exuded C-13 compounds. In limed soils, the majority of the community detected by standard RNA-DGGE analysis appeared to be utilizing root exudates. In unlimed soils, DGGE profiles from C-12 and C-13 RNA fractions differed, suggesting that a proportion of the active community was utilizing other sources of organic carbon. These differences may reflect differences in the amount of root exudation under the different conditions.
Resumo:
The present study aimed to investigate the effects of root surface iron plaque on the uptake kinetics of arsenite and arsenate by excised roots of rice (Oryza sativa) seedlings. The results demonstrated that the presence of iron plaque enhanced arsenite and decreased arsenate uptake. Arsenite and arsenate uptake kinetics were adequately fitted by the Michaelis-Menten function in the absence of plaque, but produced poor fits to this function in the presence of plaque. Phosphate in the uptake solution did not have a significant effect on arsenite uptake irrespective of the presence of iron plaque; however phosphate had a significant effect on arsenate uptake. Without iron plaque, phosphate inhibited arsenate uptake. The presence of iron plaque diminished the effect of phosphate on arsenate uptake, possibly through a combined effect of arsenate desorption from iron plaque.
Resumo:
High-affinity nitrate transport was examined in intact root hair cells of Arabidopsis thaliana using electrophysiological recordings to characterise the response of the plasma membrane to NO3-challenge and to quantify transport activity. The NO3--associated membrane current was determined using a three-electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in the roots of seedlings grown in the absence of a nitrogen source, but only 4-6 days postgermination. In 6-day-old seedlings, additions of 5-100 μm NO3-to the bathing medium resulted in membrane depolarizations of 8-43 mV, and membrane voltage (Vm) recovered on washing NO3-from the bath. Voltage clamp measurements carried out immediately before and following NO3-additions showed that the NO3--evoked depolarizations were the consequence of an inward-directed current that appeared across the entire range of accessible voltages (-300 to +50 mV). Both membrane depolarizations and NO3--evoked currents recorded at the free-running voltage displayed quasi-Michaelian kinetics, with apparent values for Km of 23 ± 6 and 44 ± 11 μm, respectively and, for the current, a maximum of 5.1 ± 0.9 μA cm-2. The NO3-current showed a pronounced voltage sensitivity within the normal physiological range between -250 and -100 mV, as could be demonstrated under voltage clamp, and increasing the bathing pH from 6.1 to 7.4-8.0 reduced the current and the associated membrane depolarizations 3- to 8-fold. Analyses showed a well-defined interaction between the kinetic variables of membrane voltage, pHo and [NO3-]o. At a constant pHo of 6.1, depolarization from -250 to -150 mV resulted in an approximate 3-fold reduction in the maximum current but a 10% rise in the apparent affinity for NO3-. By contrast, the same depolarization effected an approximate 20% fall in the Km for transport as a function in [H+]o. These, and additional characteristics of the transport current implicate a carrier cycle in which NO3-binding is kinetically isolated from the rate-limiting step of membrane charge transit, and they indicate a charge-coupling stoichiometry of 2(H+) per NO3-anion transported across the membrane. The results concur with previous studies showing a high-affinity NO3-transport system in Arabidopsis that is inducible following a period of nitrogen-limiting growth, but they underline the importance of voltage as a kinetic factor controlling NO3-transport at the plant plasma membrane. © 1995 Springer-Verlag New York Inc.
Resumo:
A novel high performance bit parallel architecture to perform square root and division is proposed. Relevant VLSI design issues have been addressed. By employing redundant arithmetic and a semisystolic schedule, the throughput has been made independent of the size of the array.