106 resultados para Transformada de Wavelet


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oscillations in network bright points (NBPs) are studied at a variety of chromospheric heights. In particular, the three-dimensional variation of NBP oscillations is studied using image segmentation and cross-correlation analysis between images taken in light of Ca II K3, Ha core, Mg I b2, and Mg I b1-0.4 Å. Wavelet analysis is used to isolate wave packets in time and to search for height-dependent time delays that result from upward- or downward-directed traveling waves. In each NBP studied, we find evidence for kink-mode waves (1.3, 1.9 mHz), traveling up through the chromosphere and coupling with sausage-mode waves (2.6, 3.8 mHz). This provides a means for depositing energy in the upper chromosphere. We also find evidence for other upward- and downward-propagating waves in the 1.3-4.6 mHz range. Some oscillations do not correspond to traveling waves, and we attribute these to waves generated in neighboring regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the intensity oscillations observed in the gradual phase of a white-light flare on the RS CV n binary II Peg. Fast Fourier Transform power spectra and Wavelet analysis reveal a period of 220 s. The reliability of the oscillation is tested using several criteria. Oscillating coronal loop models are used to derive physical parameters such as temperature, electron density and magnetic field strength associated with the coronal loop. The derived parameters are consistent with the near-simultaneous X-ray observations of the flare. There is no evidence for oscillations in the quiescent state of the binary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-cadence multiwavelength optical observations were taken with the Dunn Solar Telescope at the National Solar Observatory, Sacramento Peak, accompanied by Advanced Stokes Polarimeter vector magnetograms. A total of 11 network bright points (NBPs) have been studied at different atmospheric heights using images taken in wave bands centered on Mg I b(1) - 0.4 Angstrom, Halpha, and Ca II K-3. Wavelet analysis was used to study wave packets and identify traveling magnetohydrodynamic waves. Wave speeds were estimated through the temporal cross-correlation of signals, in selected frequency bands of wavelet power, in each wavelength. Four mode-coupling cases were identified, one in each of four of the NBPs, and the variation of the associated Fourier power with height was studied. Three of the detected mode-coupling, transverse-mode frequencies were observed in the 1.2-1.6 mHz range (mean NBP apparent flux density magnitudes over 99-111 Mx cm(-2)), with the final case showing 2.0-2.2 mHz (with 142 Mx cm(-2)). Following this, longitudinal-mode frequencies were detected in the range 2.6-3.2 mHz for three of our cases, with 3.9-4.1 mHz for the remaining case. After mode coupling, two cases displayed a decrease in longitudinal-mode Fourier power in the higher chromosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the mechanisms proposed for heating the corona above solar active regions is the damping of magnetohydrodynamic (MHD) waves. Continuing on previous work, we provide observational evidence for the existence of high-frequency MHD waves in coronal loops observed during the August 1999 total solar eclipse. A wavelet analysis is used to identify twenty 4 x 4 arcsec(2) areas showing intensity oscillations. All detections lie in the frequency range 0.15 - 0.25 Hz (7 - 4 s), last for at least 3 periods at a confidence level of more than 99% and arise just outside known coronal loops. This leads us to suggest that they occur in low emission-measure or different temperature loops associated with the active region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quiet-Sun oscillations in the four Transition Region and Coronal Explorer (TRACE) ultraviolet passbands centered on 1700, 1600, 1216, and 1550 Angstrom are studied using a wavelet-based technique. Both network and internetwork regions show oscillations with a variety of periods and lifetimes in all passbands. The most frequent network oscillation has a period of 283 s, with a lifetime of 2-3 cycles in all passbands. These oscillations are discussed in terms of upwardly propagating magnetohydrodynamic wave models. The most frequent internetwork oscillation has a period of 252 s, again with a lifetime of 2-3 cycles, in all passbands. The tendency for these oscillations to recur in the same position is discussed in terms of "persistent flashers." The network contains greater oscillatory power than the internetwork at periods longer than 300 s in the low chromosphere. This value is shown to decrease to 250 s in the high chromosphere. The internetwork also displays a larger number of short-lifetime, long-period oscillations than the network, especially in the low chromosphere. Both network and internetwork regions contain a small number of nonrecurring long-lifetime oscillations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-cadence Halpha blue wing observations of a C9.6 solar flare obtained at Big Bear Solar Observatory using the Rapid Dual Imager are presented. Wavelet and time-distance methods were used to study oscillatory power along the ribbon, finding periods of 40 - 80 s during the impulsive phase of the flare. A parametric study found statistically significant intensity oscillations with amplitudes of 3% of the peak flare amplitude, periods of 69 s (14.5 mHz) and oscillation decay times of 500 s. These measured properties are consistent with the existence of flare-induced acoustic waves within the overlying loops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impulsively generated short-period fast magneto-acoustic wave trains, guided by solar and stellar coronal loops, are numerically modelled. In the developed stage of the evolution, the wave trains have a characteristic quasi-periodic signature. The quasi-periodicity results from the geometrical dispersion of the guided fast modes, determined by the transverse profile of the loop. A typical feature of the signature is a tadpole wavelet Spectrum: a narrow-spectrum tail precedes a broad-band head. The instantaneous period of the oscillations in the wave train decreases gradually with time. The period and the spectral amplitude evolution are shown to be determined by the steepness of the transverse density profile and the density contrast ratio in the loop. The propagating wave trains recently discovered with the Solar Eclipse Coronal Imaging System (SECIS) instrument are noted to have similar wavelet spectral features, which strengthens the interpretation of SECIS results as guided fast wave trains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An area-efficient high-throughput architecture based on distributed arithmetic is proposed for 3D discrete wavelet transform (DWT). The 3D DWT processor was designed in VHDL and mapped to a Xilinx Virtex-E FPGA. The processor runs up to 85 MHz, which can process the five-level DWT analysis of a 128 x 128 x 128 fMRI volume image in 20 ms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-cadence optical observations of an H-alpha blue-wing bright point near solar AR NOAA 10794 are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system, the RAPID DUAL IMAGER. Wavelet analysis is undertaken to search for intensity-related oscillatory signatures, and periodicities ranging from 15 to 370 s are found with significance levels exceeding 95%. During two separate microflaring events, oscillation sites surrounding the bright point are observed to twist. We relate the twisting of the oscillation sites to the twisting of physical flux tubes, thus giving rise to reconnection phenomena. We derive an average twist velocity of 8.1 km s(-1) and detect a peak in the emitted flux between twist angles of 180 degrees and 230 degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-cadence, synchronized, multiwavelength optical observations of a solar active region (NOAA 10794) are presented. The data were obtained with the Dunn Solar Telescope at the National Solar Observatory/Sacramento Peak using a newly developed camera system: the rapid dual imager. Wavelet analysis is undertaken to search for intensity related oscillatory signatures, and periodicities ranging from 20 to 370 s are found with significance levels exceeding 95%. Observations in the H-α blue wing show more penumbral oscillatory phenomena when compared to simultaneous G-band observations. The H-α oscillations are interpreted as the signatures of plasma motions with a mean velocity of 20 km s-1. The strong oscillatory power over H-α blue-wing and G-band penumbral bright grains is an indication of the Evershed flow with frequencies higher than previously reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm proposed by us. This algorithm can converge to feature basis vectors, which behave in the locality and orientation in spatial and frequency domain. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. This denoising method is evaluated by values of the normalized signal to noise rate (SNR). Experimental results show that the NNSC shrinkage approach is indeed efficient and effective in denoising. Otherwise, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulation results show that our method outperforms the three kinds of denoising approaches mentioned above.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two sequences of solar images obtained by the Transition Region and Coronal Explorer in three UV passbands are studied using wavelet and Fourier analysis and compared to the photospheric magnetic flux measured by the Michelson Doppler Interferometer on the Solar Heliospheric Observatory to study wave behavior in differing magnetic environments. Wavelet periods show deviations from the theoretical cutoff value and are interpreted in terms of inclined fields. The variation of wave speeds indicates that a transition from dominant fast-magnetoacoustic waves to slow modes is observed when moving from network into plages and umbrae. This implies preferential transmission of slow modes into the upper atmosphere, where they may lead to heating or be detected in coronal loops and plumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eight thousand images of the solar corona were captured during the June 2001 total solar eclipse. New software for the alignment of the images and an automated technique for detecting intensity oscillations using multi-scale wavelet analysis were developed. Large areas of the images covered by the Moon and the upper corona were scanned for oscillations and the statistical properties of the atmospheric effects were determined. The a Trous wavelet transform was used for noise reduction and Monte Carlo analysis as a significance test of the detections. The effectiveness of those techniques is discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latent semantic indexing (LSI) is a popular technique used in information retrieval (IR) applications. This paper presents a novel evaluation strategy based on the use of image processing tools. The authors evaluate the use of the discrete cosine transform (DCT) and Cohen Daubechies Feauveau 9/7 (CDF 9/7) wavelet transform as a pre-processing step for the singular value decomposition (SVD) step of the LSI system. In addition, the effect of different threshold types on the search results is examined. The results show that accuracy can be increased by applying both transforms as a pre-processing step, with better performance for the hard-threshold function. The choice of the best threshold value is a key factor in the transform process. This paper also describes the most effective structure for the database to facilitate efficient searching in the LSI system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-affine dehydrated colloidal deposits on fresh mica surfaces of the synthetic layered silicate 2:1 smectite clay laponite have been studied by means of atomic force microscopy (AFM). AFM images of these prepared assemblies of sol and gel aggregates have been analyzed both by means of standard AFM Fourier software and a wavelet method. The deposited surfaces show a persistence to antipersistent crossover with a clay concentration dependent crossover length. It is concluded that the crossover length is associated with aggregate size, and further that the persistent roughness at small length scales signals near compact clusters of fractal dimension three, whereas the antipersistent roughness at large length scales signals a sedimentation process.