104 resultados para Toxin
Resumo:
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130–230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130–230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 µg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.
Resumo:
Studies have confirmed the key role of Bacillus anthracis protective antigen (PA) in the US and UK human anthrax vaccines. However, given the tripartite nature of the toxin, other components, including lethal factor (LF), are also likely to contribute to protection. We examined the antibody and T cell responses to PA and LF in human volunteers immunized with the UK anthrax vaccine (AVP). Individual LF domains were assessed for immunogenicity in mice when given alone or with PA. Based on the results obtained, a novel fusion protein comprising D1 of LF and the host cell-binding domain of PA (D4) was assessed for protective efficacy. Murine protection studies demonstrated that both full-length LF and D1 of LF conferred complete protection against a lethal intraperitoneal challenge with B. anthracis STI spores. Subsequent studies with the LFD1-PAD4 fusion protein showed a similar level of protection. LF is immunogenic in humans and is likely to contribute to the protection stimulated by AVP. A single vaccine comprising protective regions from LF and PA would simplify production and confer a broader spectrum of protection than that seen with PA alone.
Resumo:
Trichothecenes are a large family of chemically related mycotoxins. Deoxynivalenol (DON), T-2 and HT-2 toxins belong to this family and are produced by various species of Fusarium. The H295R steroidogenesis assay, regulation of steroidogenic gene expression and reporter gene assays (RGAs) for the detection of androgen, estrogen, progestagen and glucocorticoid (ant)agonist responses, have been used to assess the endocrine disrupting activity of DON, T-2 and HT-2 toxins.
H295R cells were used as a model for steroidogenesis and gene expression studies and exposed with either DON (0.1–1000 ng/ml), T-2 toxin (0.0005–5 ng/ml) or HT-2 toxin (0.005–50 ng/ml) for 48 h. We observed a reduction in hormone levels in media of exposed cells following radioimmunoassay. Cell viability was determined by four colorimetric assays and we observed reduced cell viability with increasing toxin concentrations partly explaining the significant reduction in hormone levels at the highest toxin concentration of all three trichothecenes.
Thirteen of the 16 steroidogenic genes analyzed by quantitative real time PCR (RT-qPCR) were significantly regulated (P < 0.05) by DON (100 ng/ml), T-2 toxin (0.5 ng/ml) and HT-2 toxin (5 ng/ml) compared to the control, with reference genes (B2M, ATP5B and ACTB). Whereas HMGR and CYP19 were down-regulated, CYP1A1 and CYP21 were up-regulated by all three trichothecenes. DON further up-regulated CYP17, HSD3B2, CYP11B2 and CYP11B1 and down-regulated NR5A1. T-2 toxin caused down-regulation of NR0B1 and NR5A1 whereas HT-2 toxin induced up-regulation of EPHX and HSD17B1 and down-regulation of CYP11A and CYP17. The expressions of MC2R, StAR and HSD17B4 genes were not significantly affected by any of the trichothecenes in the present study.
Although the results indicate that there is no evidence to suggest that DON, T-2 and HT-2 toxins directly interact with the steroid hormone receptors to cause endocrine disruption, the present findings indicate that exposure to DON, T-2 toxin and HT-2 toxin have effects on cell viability, steroidogenesis and alteration in gene expression indicating their potential as endocrine disruptors.
Resumo:
Paralytic shellfish poisoning is a toxic syndrome described in humans following the ingestion of seafood contaminated with saxitoxin and/or its derivatives. The presence of these toxins in shellfish is considered an important health threat and their levels in seafood destined to human consumption are regulated in many countries, as well as the levels of other chemically unrelated toxins. We studied the feasibility of immunodetection of saxitoxin and its analogs using a solid-phase microsphere assay coupled to flow cytometry detection in a Luminex 200 system. The technique consists of a competition assay where the toxins in solution compete with bead-bound saxitoxin for binding to an antigonyautoxin 2/3 monoclonal antibody (GT-13A). The assay allowed the detection of saxitoxin both in buffer and mussel extracts in the range of 2.2-19.7 ng/mL (IC(20)-IC(80)). Moreover, the assay cross-reactivity with other toxins of the group is similar to previously published immunoassays, with adequate detection of most analogs except N-1 hydroxy analogs. The recovery rate of the assay for saxitoxin was close to 100%. This microsphere-based immunoassay is suitable to be used as a screening method, detecting saxitoxin from 260 to 2360 µg/kg. This microsphere/flow cytometry system provided similar sensitivities to previously published immunoassays and provides a solid background for the development of easy, flexible multiplexing of toxin detection in one sample.
Resumo:
Marine dinoflagellates of the genera Alexandrium are well known producers of the potent neurotoxic paralytic shellfish toxins that can enter the food web and ultimately present a serious risk to public health in addition to causing huge economic losses. Direct coastal monitoring of Alexandrium spp. can provide early warning of potential shellfish contamination and risks to consumers and so a rapid, sensitive, portable and easy-to-use assay has been developed for this purpose using an innovative planar waveguide device. The disposable planar waveguide is comprised of a transparent substrate onto which an array of toxin-protein conjugates is deposited, assembled in a cartridge allowing the introduction of sample, and detection reagents. The competitive assay format uses a high affinity antibody to paralytic shellfish toxins with a detection signal generated via a fluorescently labelled secondary antibody. The waveguide cartridge is analysed by a simple reader device and results are displayed on a laptop computer. Assay speed has been optimised to enable measurement within 15 min. A rapid, portable sample preparation technique was developed for Alexandrium spp. in seawater to ensure analysis was completed within a short period of time. The assay was validated and the LOD and CCß were determined as 12 pg/mL and 20 pg/mL respectively with an intra-assay CV of 11.3% at the CCß and an average recovery of 106%. The highly innovative assay was proven to accurately detect toxin presence in algae sampled from the US and European waters at an unprecedented cell density of 10 cells/L. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Many zeranol immunoassay test kits cross-react with toxins formed by naturally occurring Fusarium spp. fungi, leading to false-positive screening results. This paper describes the evaluation and application of recently published, dry reagent time-resolved fluoroimmunoassays (TR-FIA) for zeranol and the toxin alpha-zearalenol. A ring test of bovine urine fortified with zeranol and/or alpha-zearalenol in four European Union National Reference Laboratories demonstrated that the TR-FIA tests were accurate and robust. The alpha-zearalenol TR-FIA satisfactorily quantified alpha-zearalenol in urine fortified at 10-30 ng ml(-1) . The specificity-enhanced zeranol TR-FIA accurately quantified zeranol in the range 2-5 ng ml(-1) and gave no false-positive results in blank urine, even in the presence of 30 ng ml(-1) alpha-zearalenol. Zeranol TR-FIA specificity was demonstrated further by analysing incurred zeranol-free urine samples containing natural Fusarium spp. toxins. The TR-FIA yielded no false-positive results in the presence of up to 22 ng ml(-1) toxins. The performance of four commercially available zeranol immunoassay test kits was more variable. Three kits produced many false-positive results. One kit produced only one potential false-positive using a protocol that was longer than that of the TR-FIA. These TR-FIAs will be valuable tools to develop inspection criteria to distinguish illegal zeranol abuse from contamination arising from in vivo metabolism of Fusarium spp. toxins.
Resumo:
A prototype fluorescent based biosensor has been developed for the antibody based detection of food related contaminants. Its performance was characterised and showed a typical antibody binding signal of 200-2000 mV, a short term noise of 9.1 mV, and baseline slope of -0.016 mV/s over 4 h. Bulk signal detection repeatability (n=23) and reproducibility (n=3) were less than 2.4%CV. The biosensor detection unit was evaluated using two food related model systems proving its ability to monitor both binding using commercial products and inhibition through the development of an assay. This assay development potential was evaluated by observing the biosensor's performance whilst appraising several labelled antibody and glass slide configurations. The molecular interaction between biotin and an anti-biotin antibody was shown to be inhibited by 41% due to the presence of biotin in a sample. A food toxin (domoic acid) calibration curve was produced, with %CVs ranging from 2.7 to 7.8%, and a midpoint of approximately 17 ng/ml with further optimisation possible. The ultimate aim of this study was to demonstrate the working principles of this innovative biosensor as a potential portable tool with the opportunity of interchangeable assays. The biosensor design is applicable for the requirements of routine food contaminant analysis, with respect to performance, functionality and cost. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Presentation with a firm type of chronic hepatomegaly of multifactorial etiology is common among school-age children in sub-Saharan Africa.
OBJECTIVE: Aflatoxin is a liver toxin and carcinogen contaminating staple maize food. In this study we examined its role in chronic hepatomegaly.
METHODS: Plasma samples collected in 2002 and again in 2004 from 218 children attending two schools in neighboring villages were assayed for aflatoxin exposure using the aflatoxin-albumin adduct (AF-alb) biomarker. Data were previously examined for associations among hepatomegaly, malaria, and schistosomiasis.
RESULTS: AF-alb levels were high in children from both schools, but the geometric mean (95% confidence interval) in year 2002 was significantly higher in Matangini [206.5 (175.5, 243.0) pg/mg albumin] than in Yumbuni [73.2 (61.6, 87.0) pg/mg; p < 0.001]. AF-alb levels also were higher in children with firm hepatomegaly [176.6 (129.6, 240.7) pg/mg] than in normal children [79.9 (49.6, 128.7) pg/mg; p = 0.029]. After adjusting for Schistosoma mansoni and Plasmodium infection, we estimated a significant 43% increase in the prevalence of hepatomegaly/hepatosplenomegaly for every natural-log-unit increase in AF-alb. In 2004, AF-alb levels were markedly higher than in 2002 [539.7 (463.3, 628.7) vs. 114.5 (99.7, 131.4) pg/mg; p < 0.001] but with no significant difference between the villages or between hepatomegaly and normal groups [539.7 (436.7, 666.9) vs. 512.6 (297.3, 883.8) pg/mg], possibly because acute exposures during an aflatoxicosis outbreak in 2004 may have masked any potential underlying relationship.
CONCLUSIONS: Exposure to aflatoxin was associated with childhood chronic hepatomegaly in 2002. These preliminary data suggest an additional health risk that may be related to aflatoxin exposure in children, a hypothesis that merits further testing.
Resumo:
Aflatoxin B1 (AFB1), a mycotoxin produced by Aspergillus flavus or A. parasiticus, is a frequent contaminant of food and feed. This toxin is hepatotoxic and immunotoxic. The present study analyzed in pigs the influence of AFB1 on humoral and cellular responses, and investigated whether the immunomodulation observed is produced through interference with cytokine expression. For 28 days, pigs were fed a control diet or a diet contaminated with 385, 867 or 1807 mu g pure AFB1/kg feed. At days 4 and 15, pigs were vaccinated with ovalbumin. AFB1 exposure, confirmed by an observed dose-response in blood aflatoxin-albumin adduct, had no major effect on humoral immunity as measured by plasma concentrations of total IgA, IgG and IgM and of anti-ovalbumin IgG. Toxin exposure did not impair the mitogenic response of lymphocytes but delayed and decreased their specific proliferation in response to the vaccine antigen, suggesting impaired lymphocyte activation in pigs exposed to AFB1. The expression level of pro-inflammatory (TNF-alpha, IL-1 beta, IL-6, IFN-gamma) and regulatory (IL-10) cytokines was assessed by real-time PCR in spleen. A significant up-regulation of all 5 cytokines was observed in spleen from pigs exposed to the highest dose of AFB1. In pigs exposed to the medium dose, IL-6 expression was increased and a trend towards increased IFN-gamma and IL-10 was observed. In addition we demonstrate that IL-6 impaired in vitro the antigenic- but not the mitogenic-induced proliferation of lymphocytes from control pigs vaccinated with ovalbumin. These results indicate that AFB1 dietary exposure decreases cell-mediated immunity while inducing an inflammatory response. These impairments in the immune response could participate in failure of vaccination protocols and increased susceptibility to infections described in pigs exposed to AFB1. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Essential to the conduct of epidemiologic studies examining aflatoxin exposure and the risk of heptocellular carcinoma, impaired growth, and acute toxicity has been the development of quantitative biomarkers of exposure to aflatoxins, particularly aflatoxin B-1. In this study, identical serum sample sets were analyzed for aflatoxin-albumin adducts by ELISA, high-performance liquid chromatography (HPLC) with fluorescence detection (HPLC-f), and HPLC with isotope dilution mass spectrometry (IDMS). The human samples analyzed were from an acute aflatoxicosis outbreak in Kenya in 2004 (n = 102) and the measured values ranged from 0.018 to 67.0, nondetectable to 13.6, and 0.002 to 17.7 ng/mg albumin for the respective methods. The Deming regression slopes for the HPLC-f and ELISA concentrations as a function of the IDMS concentrations were 0.71 (r(2) = 0.95) and 3.3 (r(2) = 0.96), respectively. When the samples were classified as cases or controls, based on clinical diagnosis, all methods were predictive of outcome (P < 0.01). Further, to evaluate assay precision, duplicate samples were prepared at three levels by dilution of an exposed human sample and were analyzed on three separate days. Excluding one assay value by ELISA and one assay by HPLC-f, the overall relative SD were 8.7%, 10.5%, and 9.4% for IDMS, HPLC-f, and ELISA, respectively. IDMS was the most sensitive technique and HPLC-f was the least sensitive method. Overall, this study shows an excellent correlation between three independent methodologies conducted in different laboratories and supports the validation of these technologies for assessment of human exposure to this environmental toxin and carcinogen.
Resumo:
The evaluation of exposure to aflatoxins (AF) by measurement of the level of contamination in food is hampered due to the heterogeneous distribution of AF in food. Therefore, an alternative is to estimate the exposure using specific biological markers (biomarkers) based on an understanding of the metabolism of the compound. For AF, these include aflatoxin-N-7-guanine in the urine, or AFB(1)-albumin (AF-alb) in the blood. This study assessed the level of exposure to AF in Brazilian individuals using a biomarker approach, i.e. the AF-alb adducts. Blood samples were collected from urban residents (n=50; aged 18-52) in June 1999, at the Blood Center of Antonio Carlos de Camargo Hospital, Sao Paulo, Brazil. AF-alb adduct levels were determined, by ELISA following serum albumin extraction and digestion. AF-alb adducts were detected in 31/50 (62%) samples [range 0-57.3 pg AFB(1)-lys adducts/mg of blood albumin (pg/mg)]. The mean level of positives was 14.9 pg/mg and males had the two highest levels measured (57.1 and 57.3 pg/mg). There was no correlation with age or profession. This is the first study of Brazilian, or indeed South American, individuals that has determined exposure to AF at the individual level using a biomarker approach. These levels are similar to those observed in the Philippines. These data warrant further investigation of both the sources and consequences of exposure to this potent toxin in Brazil.
Resumo:
Background Dietary exposure to high levels of the fungal toxin, aflatoxin, occurs in West Africa, where long-term crop storage facilitates fungal growth.
Methods We conducted a cross-sectional study in Benin and Togo to investigate aflatoxin exposure in children around the time of weaning and correlated these data with food consumption, socioeconomic status, agro-ecological zone of residence, and anthropometric measures. Blood samples from 479 children (age 9 months to 5 years) from 16 villages in four agro-ecological zones were assayed for aflatoxin-albumin adducts (AF-alb) as a measure of recent past (2-3 months) exposure.
Results Aflatoxin-albumin adducts were detected in 475/479 (99%) children (geometric mean 32.8 pg/mg, 95% CI: 25.3-42.5). Adduct levels varied markedly across agro-ecological zones with mean levels being approximately four times higher in the central than in the northern region. The AF-alb level increased with age up to 3 years, and within the 1-3 year age group was significantly (P=0.0001) related to weaning status; weaned children had approximately twofold higher mean AF-alb adduct levels (38 pg AF-lysine equivalents per mg of albumin [pg/mg]) than those receiving a mixture of breast milk and solid foods after adjustment for age, sex, agro-ecological zone, and socioeconomic status. A higher frequency of maize consumption, but not groundnut consumption, by the child in the preceding week was correlated with higher AF-alb adduct level. We previously reported that the prevalence of stunted growth (height for age Z-score HAZ) and being underweight (weight for age Z-score WAZ) were 33% and 29% respectively by World Health Organziation criteria. Children in these two categories had 30-40% higher mean AF-alb levels than the remainder of the children and strong dose- response relationships were observed between AF-alb levels and the extent of stunting and being underweight.
Conclusions Exposure to this common toxic contaminant of West African food increases markedly following weaning and exposure early in life is associated with reduced growth. These observations reinforce the need for aflatoxin exposure intervention strategies within high-risk countries, possibly targeted specifically at foods used in the post-weaning period.
Resumo:
Exposure assessment is a critical part of epidemiological studies into the effect of mycotoxins on human health. Whilst exposure assessment can be made by estimating the quantity of ingested toxins from food analysis and questionnaire data, the use of biological markers (biomarkers) of exposure can provide a more accurate measure of individual level of exposure in reflecting the internal dose. Biomarkers of exposure can include the excreted toxin or its metabolites, as well as the products of interaction between the toxin and macromolecules such as protein and DNA. Samples in which biomarkers may be analysed include urine, blood, other body fluids and tissues, with urine and blood being the most accessible for human studies. Here we describe the development of biomarkers of exposure for the assessment of three important mycotoxins; aflatoxin, fumonisin and deoxynivalenol. A number of different biomarkers and methods have been developed that can be applied to human population studies, and these approaches are reviewed in the context of their application to molecular epidemiology research.
Resumo:
Paralytic shellfish poisoning (PSP) is a potentially fatal human health condition caused by the consumption of shellfish containing high levels of PSP toxins. Toxin extraction from shellfish and from algal cultures for use as standards and analysis by alternative analytical monitoring methods to the mouse bioassay is extensive and laborious. This study investigated whether a selected MAb antibody could be coupled to a novel form of magnetic microsphere (hollow glass magnetic microspheres, brand name Ferrospheres-N) and whether these coated microspheres could be utilized in the extraction of low concentrations of the PSP toxin, STX, from potential extraction buffers and spiked mussel extracts. The feasibility of utilizing a mass of 25 mg of Ferrospheres-N, as a simple extraction procedure for STX from spiked sodium acetate buffer, spiked PBS buffer and spiked mussel extracts was determined. The effects of a range of toxin concentrations (20-300 ng/mL), incubation times and temperature on the capability of the immuno-capture of the STX from the spiked mussel extracts were investigated. Finally, the coated microspheres were tested to determine their efficiency at extracting PSP toxins from naturally contaminated mussel samples. Toxin recovery after each experiment was determined by HPLC analysis. This study on using a highly novel immunoaffinity based extraction procedure, using STX as a model, has indicated that it could be a convenient alternative to conventional extraction procedures used in toxin purification prior to sample analysis.
Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response
Resumo:
Multiple sclerosis is considered a disease of complex autoimmune etiology, yet there remains a lack of consensus as to specific immune effector mechanisms. Recent analyses of experimental autoimmune encephalomyelitis, the common mouse model of multiple sclerosis, have investigated the relative contribution of Th1 and Th17 CD4 T cell subsets to initial autoimmune central nervous system (CNS) damage. However, inherent in these studies are biases influenced by the adjuvant and toxin needed to break self-tolerance. We investigated spontaneous CNS disease in a clinically relevant, humanized, T cell receptor transgenic mouse model. Mice develop spontaneous, ascending paralysis, allowing unbiased characterization of T cell immunity in an HLA-DR15-restricted T cell repertoire. Analysis of naturally progressing disease shows that IFN?(+) cells dominate disease initiation with IL-17(+) cells apparent in affected tissue only once disease is established. Tregs accumulate in the CNS but are ultimately ineffective at halting disease progression. However, ablation of Tregs causes profound acceleration of disease, with uncontrolled infiltration of lymphocytes into the CNS. This synchronous, severe disease allows characterization of the responses that are deregulated in exacerbated disease: the correlation is with increased CNS CD4 and CD8 IFN? responses. Recovery of the ablated Treg population halts ongoing disease progression and Tregs extracted from the central nervous system at peak disease are functionally competent to regulate myelin specific T cell responses. Thus, in a clinically relevant mouse model of MS, initial disease is IFN? driven and the enhanced central nervous system responses unleashed through Treg ablation comprise IFN? cytokine production by CD4 and CD8 cells, but not IL-17 responses.