115 resultados para Statistical packages
Resumo:
In this article, we focus on the analysis of competitive gene set methods for detecting the statistical significance of pathways from gene expression data. Our main result is to demonstrate that some of the most frequently used gene set methods, GSEA, GSEArot and GAGE, are severely influenced by the filtering of the data in a way that such an analysis is no longer reconcilable with the principles of statistical inference, rendering the obtained results in the worst case inexpressive. A possible consequence of this is that these methods can increase their power by the addition of unrelated data and noise. Our results are obtained within a bootstrapping framework that allows a rigorous assessment of the robustness of results and enables power estimates. Our results indicate that when using competitive gene set methods, it is imperative to apply a stringent gene filtering criterion. However, even when genes are filtered appropriately, for gene expression data from chips that do not provide a genome-scale coverage of the expression values of all mRNAs, this is not enough for GSEA, GSEArot and GAGE to ensure the statistical soundness of the applied procedure. For this reason, for biomedical and clinical studies, we strongly advice not to use GSEA, GSEArot and GAGE for such data sets.
Resumo:
The use of joint modelling approaches is becoming increasingly popular when an association exists between survival and longitudinal processes. Widely recognized for their gain in efficiency, joint models also offer a reduction in bias compared with naïve methods. With the increasing popularity comes a constantly expanding literature on joint modelling approaches. The aim of this paper is to give an overview of recent literature relating to joint models, in particular those that focus on the time-to-event survival process. A discussion is provided on the range of survival submodels that have been implemented in a joint modelling framework. A particular focus is given to the recent advancements in software used to build these models. Illustrated through the use of two different real-life data examples that focus on the survival of end-stage renal disease patients, the use of the JM and joineR packages within R are demonstrated. The possible future direction for this field of research is also discussed. © 2013 International Statistical Institute.
Resumo:
The techniques of principal component analysis (PCA) and partial least squares (PLS) are introduced from the point of view of providing a multivariate statistical method for modelling process plants. The advantages and limitations of PCA and PLS are discussed from the perspective of the type of data and problems that might be encountered in this application area. These concepts are exemplified by two case studies dealing first with data from a continuous stirred tank reactor (CSTR) simulation and second a literature source describing a low-density polyethylene (LDPE) reactor simulation.
Resumo:
Anti-islanding protection is becoming increasingly important due to the rapid installation of distributed generation from renewable resources like wind, tidal and wave, solar PV, bio-fuels, as well as from other resources like diesel. Unintentional islanding presents a potential risk for damaging utility plants and equipment connected from the demand side, as well as to public and personnel in utility plants. This paper investigates automatic islanding detection. This is achieved by deploying a statistical process control approach for fault detection with the real-time data acquired through a wide area measurement system, which is based on Phasor Measurement Unit (PMU) technology. In particular, the principal component analysis (PCA) is used to project the data into principal component subspace and residual space, and two statistics are used to detect the occurrence of fault. Then a fault reconstruction method is used to identify the fault and its development over time. The proposed scheme has been used in a real system and the results have confirmed that the proposed method can correctly identify the fault and islanding site.