218 resultados para Shipwreck survival


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE:
To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication.
METHODS AND MATERIALS:
Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator.
RESULTS:
Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the a-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response.
CONCLUSIONS:
These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phantom was designed and implemented for the delivery of treatment plans to cells in vitro. Single beam, 3D-conformal radiotherapy (3D-CRT) plans, inverse planned five-field intensity-modulated radiation therapy (IMRT), nine-field IMRT, single-arc volumetric modulated arc therapy (VMAT) and dual-arc VMAT plans were created on a CT scan of the phantom to deliver 3 Gy to the cell layer and verified using a Farmer chamber, 2D ionization chamber array and gafchromic film. Each plan was delivered to a 2D ionization chamber array to assess the temporal characteristics of the plan including delivery time and 'cell's eye view' for the central ionization chamber. The effective fraction time, defined as the percentage of the fraction time where any dose is delivered to each point examined, was also assessed across 120 ionization chambers. Each plan was delivered to human prostate cancer DU-145 cells and normal primary AGO-1522b fibroblast cells. Uniform beams were delivered to each cell line with the delivery time varying from 0.5 to 20.54 min. Effective fraction time was found to increase with a decreasing number of beams or arcs. For a uniform beam delivery, AGO-1552b cells exhibited a statistically significant trend towards increased survival with increased delivery time. This trend was not repeated when the different modulated clinical delivery methods were used. Less sensitive DU-145 cells did not exhibit a significant trend towards increased survival with increased delivery time for either the uniform or clinical deliveries. These results confirm that dose rate effects are most prevalent in more radiosensitive cells. Cell survival data generated from uniform beam deliveries over a range of dose rates and delivery times may not always be accurate in predicting response to more complex delivery techniques, such as IMRT and VMAT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Survival is reportedly worse in patients with cancer concurrently diagnosed with deep venous thrombosis. However, information on specific malignancies is limited. From a cohort study of male US veterans we identified incident cancer cases (n aEuroS== aEuroS412 008) and compared survival patterns among those with versus without a history of deep venous thrombosis. Using Cox proportional hazard models, we estimated hazard ratios (HRs) and 95%% confidence intervals as measures of the relative risk of dying. Individuals with (versus without) a concomitant deep venous thrombosis and cancer diagnosis had a higher risk of dying (HR aEuroS== aEuroS1.38; 1.28--1.49). The most prominent excess mortality (HR aEuroS== aEuroS1.29--2.55) was observed among patients diagnosed with deep venous thrombosis at the time of diagnosis of lung, gastric, prostate, bladder, or kidney cancer. Increased risk of dying was also found among cancer patients diagnosed with deep venous thrombosis 1 year (HR aEuroS== aEuroS1.14; 1.07--1.22), 1--5 years (HR aEuroS== aEuroS1.14; 1.10--1.19), and > 5 years (HR aEuroS== aEuroS1.27; 1.23--1.31) before cancer; this was true for most cancer sites (HR aEuroS== aEuroS1.17--1.64). In summary, antecedent deep venous thrombosis confers a worse prognosis upon cancer patients. Advanced stage at diagnosis, treatment effects, lifestyle factors, and comorbidity could explain differences by cancer site and time frame between a prior deep venous thrombosis diagnosis and cancer outcome.