83 resultados para Scaling laws


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the throes of her mimetic exposure of the lie of phallocratic discursive unity in 'Speculum of the Other Woman', Irigaray paused on the impossibility of woman’s voice and remarked that ‘it [was] still better to speak only in riddles, allusions, hints, parables.’ Even if asked to clarify a few points. Even if people plead that they just don’t understand. After all, she said, ‘they never have understood.’ (Irigaray 1985, 143).

That the law has never understood a uniquely feminine narrative is hardly controversial, but that this erasure continues to have real and substantive consequences for justice is a reality that feminists have been compelled to remain vigilant in exposing. How does the authority of the word compound law’s exclusionary matrix? How does law remain impervious to woman’s voice and how might it hear woman’s voice? Is there capacity for a dialogic engagement between woman, parler femme, and law?

This paper will explore these questions with particular reference to the experience of women testifying to trauma during the rape trial. It will argue that a logically linked historical genealogy can be traced through which law has come to posit itself as an originary discourse by which thinking is very much conflated with being, or in other terms, law is conflated with justice. This has consequences both for women’s capacity to speak or represent the harm of rape to law, but also for law’s ability to ‘hear’ woman’s voice and objectively adjudicate in cases of rape. It will suggest that justice requires law acknowledge the presence of two distinct and different subjects and that this must be done not only at the symbolic level but also at the level of the parole, syntax and discourse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel method for modelling a scaled vehicle–barrier crash test similar to the 20◦ angled barrier test specified in EN 1317 is reported. The intended application is for proof-of-concept evaluation of novel roadside barrier designs, and as a cost-effective precursor to full-scale testing or detailed computational modelling. The method is based on the combination of the conservation of energy law and the equation of motion of a spring mass system representing the impact, and shows, for the first time, the feasibility of applying classical scaling theories to evaluation of roadside barrier design. The scaling method is used to set the initial velocity of the vehicle in the scaled test and to provide scaling factors to convert the measured vehicle accelerations in the scaled test to predicted full-scale accelerations. These values can then be used to calculate the Acceleration Severity Index score of the barrier for a full-scale test. The theoretical validity of the method is demonstrated by comparison to numerical simulations of scaled and full-scale angled barrier impacts using multibody analysis implemented in the crash simulation software MADYMO. Results show a maximum error of 0.3% ascribable to the scaling method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the presence of nondistillable (bound) entanglement in natural many-body systems. In particular, we consider standard harmonic and spin-1/2 chains, at thermal equilibrium and characterized by few interaction parameters. The existence of bound entanglement is addressed by calculating explicitly the negativity of entanglement for different partitions. This allows us to individuate a range of temperatures for which no entanglement can be distilled by means of local operations, despite the system being globally entangled. We discuss how the appearance of bound entanglement can be linked to entanglement-area laws, typical of these systems. Various types of interactions are explored, showing that the presence of bound entanglement is an intrinsic feature of these systems. In the harmonic case, we analytically prove that thermal bound entanglement persists for systems composed by an arbitrary number of particles. Our results strongly suggest the existence of bound entangled states in the macroscopic limit also for spin-1/2 systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the entanglement distillability properties of thermal states of many-body systems Following the ideas presented in [6, A Ferraro et al., Phys. Rev Lett 100, 080502 (2008)], we first discuss the appearance of bound entanglement in those systems satisfying an entanglement area law Then, we extend these results to other topologies, not necessarily satisfying an entanglement area law We also study whether bound entanglement survives in the macroscopic limit of an infinite number of particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the uplink achievable rates of massive multiple-input multiple-output (MIMO) antenna systems in Ricean fading channels, using maximal-ratio combining (MRC) and zero-forcing (ZF) receivers, assuming perfect and imperfect channel state information (CSI). In contrast to previous relevant works, the fast fading MIMO channel matrix is assumed to have an arbitrary-rank deterministic component as well as a Rayleigh-distributed random component. We derive tractable expressions for the achievable uplink rate in the large-antenna limit, along with approximating results that hold for any finite number of antennas. Based on these analytical results, we obtain the scaling law that the users' transmit power should satisfy, while maintaining a desirable quality of service. In particular, it is found that regardless of the Ricean K-factor, in the case of perfect CSI, the approximations converge to the same constant value as the exact results, as the number of base station antennas, M, grows large, while the transmit power of each user can be scaled down proportionally to 1/M. If CSI is estimated with uncertainty, the same result holds true but only when the Ricean K-factor is non-zero. Otherwise, if the channel experiences Rayleigh fading, we can only cut the transmit power of each user proportionally to 1/√M. In addition, we show that with an increasing Ricean K-factor, the uplink rates will converge to fixed values for both MRC and ZF receivers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today's multi-media electronic era is driven by the increasing demand for small multifunctional devices able to support diverse services. Unfortunately, the high levels of transistor integration and performance required by such devices lead to an unprecedented increase of on-chip power that significantly limits the battery lifetime and even poses reliability concerns. Several techniques have been developed to address the power increase, but voltage over-scaling (VOS) is considered to be one of the most effective ones due to the quadratic dependence of voltage on dynamic power consumption. However, VOS may not always be applicable since it increases the delay in all paths of a system and may limit high performance required by today's complex applications. In addition, application of VOS is further complicated since it increases the variations in transistor characteristics imposed by their tiny size which can lead to large delay and leakage variations, making it difficult to meet delay and power budgets. This paper presents a review of various cross-layer design options that can provide solutions for dynamic voltage over-scaling and can potentially assist in meeting the strict power budgets and yield/quality requirements of future systems. © 2011 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce the equations of magneto-quantum-radiative hydrodynamics. By rewriting them in a dimensionless form, we obtain a set of parameters that describe scale-dependent ratios of characteristic hydrodynamic quantities. We discuss how these dimensionless parameters relate to the scaling between astrophysical observations and laboratory experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we examine, for the first time, the molar conductivity behavior of the deeply supercooled room temperature ionic liquid [C4mim][NTf2] in the temperature, pressure and volume thermodynamic space in terms of density scaling (TVγ)−1 combined with the equation of state (EOS). The exponent γσ determined from the Avramov model analysis is compared with the coefficient obtained from the viscosity studies carried out at moderate temperatures. Therefore, the experimental results presented herein provide the answer to the long-standing question regarding the validity of thermodynamic scaling of ionic liquids over a wide temperature range, i.e. from the normal liquid state to the glass transition point. Finally, we investigate the relationship between the dynamic and thermodynamic properties of [C4mim][NTf2] represented by scaling exponent γ and Grüneisen constant γG, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of A3/4 representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO(2) and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variability in metabolic scaling in animals, the relationship between metabolic rate (R) and body mass (M), has been a source of debate and controversy for decades. R is proportional to M-b, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial distribution of a species can be characterized at many different spatial scales, from fine-scale measures of local population density to coarse-scale geographical-range structure. Previous studies have shown a degree of correlation in species' distribution patterns across narrow ranges of scales, making it possible to predict fine-scale properties from coarser-scale distributions. To test the limits of such extrapolation, we have compiled distributional information on 16 species of British plants, at scales ranging across six orders of magnitude in linear resolution (1 in to 100 km). As expected, the correlation between patterns at different spatial scales tends to degrade as the scales become more widely separated. There is, however, an abrupt breakdown in cross-scale correlations across intermediate (ca. 0.5 km) scales, suggesting that local and regional patterns are influenced by essentially non-overlapping sets of processes. The scaling discontinuity may also reflect characteristic scales of human land use in Britain, suggesting a novel method for analysing the 'footprint' of humanity on a landscape.