214 resultados para SUPERNOVA REMNANT
Resumo:
The interpretation of supernova (SN) spectra is essential for deriving SN ejecta properties such as density and composition, which in turn can tell us about their progenitors and the explosion mechanism. A very large number of atomic processes are important for spectrum formation. Several tools for calculating SN spectra exist, but they mainly focus on the very early or late epochs. The intermediate phase, which requires a non-local thermodynamic equilibrium (NLTE) treatment of radiation transport has rarely been studied. In this paper, we present a new SN radiation transport code, nero, which can look at those epochs. All the atomic processes are treated in full NLTE, under a steady-state assumption. This is a valid approach between roughly 50 and 500days after the explosion depending on SN type. This covers the post-maximum photospheric and the early and the intermediate nebular phase. As a test, we compare nero to the radiation transport code of Jerkstrand, Fransson & Kozma and to the nebular code of Mazzali et al. All three codes have been developed independently and a comparison provides a valuable opportunity to investigate their reliability. Currently, nero is one-dimensional and can be used for predicting spectra of synthetic explosion models or for deriving SN properties by spectral modelling. To demonstrate this, we study the spectra of the 'normal' Type Ia supernova (SN Ia) 2005cf between 50 and 350 days after the explosion and identify most of the common SN Ia line features at post-maximum epochs. © 2011 The Authors Monthly Notices of the Royal Astronomical Society © 2011 RAS.
Resumo:
Despite their astrophysical significanceas a major contributor to cosmic nucleosynthesis and as distance indicators in observational cosmologyType Ia supernovae lack theoretical explanation. Not only is the explosion mechanism complex due to the interaction of (potentially turbulent) hydrodynamics and nuclear reactions, but even the initial conditions for the explosion are unknown. Various progenitor scenarios have been proposed. After summarizing some general aspects of Type Ia supernova modeling, recent simulations of our group are discussed. With a sequence of modeling starting (in some cases) from the progenitor evolution and following the explosion hydrodynamics and nucleosynthesis we connect to the formation of the observables through radiation transport in the ejecta cloud. This allows us to analyze several models and to compare their outcomes with observations. While pure deflagrations of Chandrasekhar-mass white dwarfs and violent mergers of two white dwarfs lead to peculiar events (that may, however, find their correspondence in the observed sample of SNe Ia), only delayed detonations in Chandrasekhar-mass white dwarfs or sub-Chandrasekhar-mass explosions remain promising candidates for explaining normal Type Ia supernovae. © 2011 Elsevier B.V. All rights reserved.
Resumo:
Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by ?-rays and positrons produced by Ni, Co, Ni, Co, Ti and Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons, together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to ?-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of Co, which are largely due to internal conversion from a fortuitously low-lying 3/2 state in the daughter Fe, constitute an additional significant energy-deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the light curve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of Fe exceed the energy released by the Ti decay chain for many years after the explosion. © 2009 RAS.
Resumo:
Stationary solutions to the equations of nonlinear diffusive shock acceleration play a fundamental role in the theory of cosmic-ray acceleration. Their existence usually requires that a fraction of the accelerated particles be allowed to escape from the system. Because the scattering mean free path is thought to be an increasing function of energy, this condition is conventionally implemented as an upper cutoff in energy space-particles are then permitted to escape from any part of the system, once their energy exceeds this limit. However, because accelerated particles are responsible for the substantial amplification of the ambient magnetic field in a region upstream of the shock front, we examine an alternative approach in which particles escape over a spatial boundary. We use a simple iterative scheme that constructs stationary numerical solutions to the coupled kinetic and hydrodynamic equations. For parameters appropriate for supernova remnants, we find stationary solutions with efficient acceleration when the escape boundary is placed at the point where growth and advection of strongly driven nonresonant waves are in balance. We also present the energy dependence of the distribution function close to the energy where it cuts off-a diagnostic that is in principle accessible to observation.
Resumo:
If recurrent novae are progenitors of Type Ia supernovae, their white dwarfs must have masses close to the Chandrasekhar limit. The most reliable means of determining white dwarf masses in recurrent novae is dynamically, via radial-velocity and rotational-broadening measurements of the companion star. Such measurements require the system to be both eclipsing and to show absorption features from the secondary star. Prior to the work reported here, the only dynamical mass estimate of a recurrent nova was for U Sco, which has a white dwarf mass of 1.55 +/- 0.24 Msolar (Thoroughgood et al. 2001). We present new time-resolved, intermediate-resolution spectroscopy of the eclipsing recurrent nova CI Aquilae (CI Aql) during quiescence. We find the mass of the white dwarf to be 1.00 +/- 0.14 Msolar and the mass of the secondary star to be 2.32 +/- 0.19 Msolar. We estimate the radius of the secondary to be 2.07 +/- 0.06 Rsolar, implying that it is a slightly-evolved early A-type star. The high mass ratio of q = 2.35 +/- 0.24 and the high secondary-star mass implies that the mass transfer occurs on a thermal timescale. We suggest that CI Aql is rapidly evolving into a supersoft X-ray source, and ultimately may explode as a Type Ia supernova within 10 Myr.
Resumo:
We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was 40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of 7-17 foe and a total ejected mass of 7-17 Mo, 5-10 Mo of which is oxygen and 0.6-0.7 Mo is 56Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 Mo. The profile of the forbidden oxygen lines in the nebular spectra show no evidence of a bi-polar geometry in the ejected material.
Resumo:
A set of hydrodynamical models based on stellar evolutionary progenitors is used to study the nature of SN 2011dh. Our modeling suggests that a large progenitor star ---with R ~200 Rsun---, is needed to reproduce the early light curve of SN 2011dh. This is consistent with the suggestion that the yellow super-giant star detected at the location of the SN in deep pre-explosion images is the progenitor star. From the main peak of the bolometric light curve and expansion velocities we constrain the mass of the ejecta to be ~2 Msun, the explosion energy to be E= 6-10 x 10^50 erg, and the 56Ni mass to be approximately 0.06 Msun. The progenitor star was composed of a helium core of 3 to 4 Msun and a thin hydrogen-rich envelope of ~0.1 M_sun with a main sequence mass estimated to be in the range of 12--15 Msun. Our models rule out progenitors with helium-core masses larger than 8 Msun, which correspond to M_ZAMS > 25 Msun. This suggests that a single star evolutionary scenario for SN 2011dh is unlikely.
Resumo:
We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (c.f. SN 2006jc), dominated by intermediate-width (3x10^3 km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt = 9-23 days and shows an NUV-NIR SED with temperature > 17x10^3 K and a peak rise magnitude of Mz = -18.9 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17 - 100 M_sun) explosion within a He-enriched circumstellar medium. However, unlike previous Type Ibn supernovae, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Sigma Halpha
Resumo:
We present optical photometric and spectroscopic coverage of the superluminous supernova (SLSN) PS1-11ap, discovered with the Pan-STARRS1 Medium Deep Survey at z = 0.524. This intrinsically blue transient rose slowly to reach a peak magnitude of Mu = −21.4 mag and bolometric luminosity of 8 × 1043 erg s−1 before settling on to a relatively shallow gradient of decline. The observed decline is significantly slower than those of the SLSNe-Ic which have been the focus of much recent attention. Spectroscopic similarities with the lower redshift SN2007bi and a decline rate similar to 56Co decay time-scale initially indicated that this transient could be a candidate for a pair instability supernova (PISN) explosion. Overall the transient appears quite similar to SN2007bi and the lower redshift object PTF12dam. The extensive data set, from 30 d before peak to 230 d after, allows a detailed and quantitative comparison with published models of PISN explosions. We find that the PS1-11ap data do not match these model explosion parameters well, supporting the recent claim that these SNe are not pair instability explosions. We show that PS1-11ap has many features in common with the faster declining SLSNe-Ic, and the light-curve evolution can also be quantitatively explained by the magnetar spin-down model. At a redshift of z = 0.524, the observer-frame optical coverage provides comprehensive rest-frame UV data and allows us to compare it with the SLSNe recently found at high redshifts between z = 2 and 4. While these high-z explosions are still plausible PISN candidates, they match the photometric evolution of PS1-11ap and hence could be counterparts to this lower redshift transient.
Resumo:
We present 65 optical spectra of the Type Ia supernova SN 2012fr, of which 33 were obtained before maximum light. At early times SN 2012fr shows clear evidence of a high-velocity feature (HVF) in the Si II 6355 line which can be cleanly decoupled from the lower velocity "photospheric" component. This Si II 6355 HVF fades by phase -5; subsequently, the photospheric component exhibits a very narrow velocity width and remains at a nearly constant velocity of v~12,000 km/s until at least 5 weeks after maximum brightness. The Ca II infrared (IR) triplet exhibits similar evidence for both a photospheric component at v~12,000 km/s with narrow line width and long velocity plateau, as well as a high-velocity component beginning at v~31,000 km/s two weeks before maximum. SN 2012fr resides on the border between the "shallow silicon" and "core-normal" subclasses in the Branch et al. (2009) classification scheme, and on the border between normal and "high-velocity" SNe Ia in the Wang et al. (2009a) system. Though it is a clear member of the "low velocity gradient" (LVG; Benetii et al., 2005) group of SNe Ia and exhibits a very slow light-curve decline, it shows key dissimilarities with the overluminous SN 1991T or SN 1999aa subclasses of SNe Ia. SN 2012fr represents a well-observed SN Ia at the luminous end of the normal SN Ia distribution, and a key transitional event between nominal spectroscopic subclasses of SNe Ia.
Resumo:
SN 2004et is one of the nearest and best-observed Type IIP supernovae, with a progenitor detection as well as good photometric and spectroscopic observational coverage well into the nebular phase. Based on nucleosynthesis from stellar evolution/explosion models we apply spectral modeling to analyze its 140-700 day evolution from ultraviolet to mid-infrared. We find a M_ZAMS= 15 Msun progenitor star (with an oxygen mass of 0.8 Msun) to satisfactorily reproduce [O I] 6300, 6364 {\AA} and other emission lines of carbon, sodium, magnesium, and silicon, while 12 Msun and 19 Msun models under- and overproduce most of these lines, respectively. This result is in fair agreement with the mass derived from the progenitor detection, but in disagreement with hydrodynamical modeling of the early-time light curve. From modeling of the mid-infrared iron-group emission lines, we determine the density of the "Ni-bubble" to rho(t) = 7E-14*(t/100d)^-3 g cm^-3, corresponding to a filling factor of f = 0.15 in the metal core region (V = 1800 km/s). We also confirm that silicate dust, CO, and SiO emission are all present in the spectra.
Resumo:
We investigate whether pure deflagration models ofChandrasekhar-mass carbon-oxygen white dwarf stars can account for one or more subclass of the observed population of Type Ia supernova (SN Ia) explosions. We compute a set of 3D full-star hydrodynamic explosion models, in which the deflagration strength is parametrized using the multispot ignition approach. For each model, we calculate detailed nucleosynthesis yields in a post-processing step with a 384 nuclide nuclear network. We also compute synthetic observables with our 3D Monte Carlo radiative transfer code for comparison with observations. For weak and intermediate deflagration strengths (energy release E {less-than or approximate} 1.1 × 10 erg), we find that the explosion leaves behind a bound remnant enriched with 3 to 10 per cent (by mass) of deflagration ashes. However, we do not obtain the large kick velocities recently reported in the literature. We find that weak deflagrations with E ~ 0.5 × 10 erg fit well both the light curves and spectra of 2002cx-like SNe Ia, and models with even lower explosion energies could explain some of the fainter members of this subclass. By comparing our synthetic observables with the properties of SNe Ia, we can exclude the brightest, most vigorously ignited models as candidates for any observed class of SN Ia: their B-V colours deviate significantly from both normal and 2002cx-like SNe Ia and they are too bright to be candidates for other subclasses.
Resumo:
We present a sample of normal Type Ia supernovae (SNe Ia) from the Nearby Supernova Factory data set with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve.Wemeasure Ni masses from the peak bolometric luminosity, then compare the luminosity in the Co-decay tail to the expected rate of radioactive energy release from ejecta of a given mass. We infer the ejected mass in a Bayesian context using a semi-analytic model of the ejecta, incorporating constraints from contemporary numerical models as priors on the density structure and distribution of Ni throughout the ejecta. We find a strong correlation between ejected mass and light-curve decline rate, and consequently Ni mass, with ejected masses in our data ranging from 0.9 to 1.4 M. Most fast-declining (SALT2 x <-1) normal SNe Ia have significantly sub-Chandrasekhar ejected masses in our fiducial analysis.
Resumo:
SN 2010lp is a subluminous Type Ia supernova (SN Ia) with slowly evolving lightcurves. Moreover, it is the only subluminous SN Ia observed so far that shows narrow emission lines of [O I] in late-time spectra, indicating unburned oxygen close to the center of the ejecta. Most explosion models for SNe Ia cannot explain the narrow [O I] emission. Here, we present hydrodynamic explosion and radiative transfer calculations showing that the violent merger of two carbon-oxygen white dwarfs of 0.9 and 0.76 M adequately reproduces the early-time observables of SN 2010lp. Moreover, our model predicts oxygen close to the center of the explosion ejecta, a pre-requisite for narrow [O I] emission in nebular spectra as observed in SN 2010lp. © 2013. The American Astronomical Society. All rights reserved.
Resumo:
In recent years, wide-field sky surveys providing deep multi-band imaging have presented a new path for indirectly characterizing the progenitor populations of core-collapse supernovae (SN): systematic light curve studies. We assemble a set of 76 grizy-band Type IIP SN light curves from Pan-STARRS1, obtained over a constant survey program of 4 years and classified using both spectroscopy and machine learning-based photometric techniques. We develop and apply a new Bayesian model for the full multi-band evolution of each light curve in the sample. We find no evidence of a sub-population of fast-declining explosions (historically referred to as "Type IIL" SNe). However, we identify a highly significant relation between the plateau phase decay rate and peak luminosity among our SNe IIP. These results argue in favor of a single parameter, likely determined by initial stellar mass, predominantly controlling the explosions of red supergiants. This relation could also be applied for supernova cosmology, offering a standardizable candle good to an intrinsic scatter of 0.2 mag. We compare each light curve to physical models from hydrodynamic simulations to estimate progenitor initial masses and other properties of the Pan-STARRS1 Type IIP SN sample. We show that correction of systematic discrepancies between modeled and observed SN IIP light curve properties and an expanded grid of progenitor properties, are needed to enable robust progenitor inferences from multi-band light curve samples of this kind. This work will serve as a pathfinder for photometric studies of core-collapse SNe to be conducted through future wide field transient searches.