64 resultados para SAMPLE HOLDER
Resumo:
2. K. Gow, P.K.J Robertson, P.M. Pollard, and K. Christidis
Resumo:
PurposeThe selection of suitable outcomes and sample size calculation are critical factors in the design of a randomised controlled trial (RCT). The goal of this study was to identify the range of outcomes and information on sample size calculation in RCTs on geographic atrophy (GA).MethodsWe carried out a systematic review of age-related macular degeneration (AMD) RCTs. We searched MEDLINE, EMBASE, Scopus, Cochrane Library, www.controlled-trials.com, and www.ClinicalTrials.gov. Two independent reviewers screened records. One reviewer collected data and the second reviewer appraised 10% of collected data. We scanned references lists of selected papers to include other relevant RCTs.ResultsLiterature and registry search identified 3816 abstracts of journal articles and 493 records from trial registries. From a total of 177 RCTs on all types of AMD, 23 RCTs on GA were included. Eighty-one clinical outcomes were identified. Visual acuity (VA) was the most frequently used outcome, presented in 18 out of 23 RCTs and followed by the measures of lesion area. For sample size analysis, 8 GA RCTs were included. None of them provided sufficient Information on sample size calculations.ConclusionsThis systematic review illustrates a lack of standardisation in terms of outcome reporting in GA trials and issues regarding sample size calculation. These limitations significantly hamper attempts to compare outcomes across studies and also perform meta-analyses.
Resumo:
We probe the systematic uncertainties from the 113 Type Ia supernovae (SN Ia) in the Pan-STARRS1 (PS1) sample along with 197 SN Ia from a combination of low-redshift surveys. The companion paper by Rest et al. describes the photometric measurements and cosmological inferences from the PS1 sample. The largest systematic uncertainty stems from the photometric calibration of the PS1 and low-z samples. We increase the sample of observed Calspec standards from 7 to 10 used to define the PS1 calibration system. The PS1 and SDSS-II calibration systems are compared and discrepancies up to ∼0.02 mag are recovered. We find uncertainties in the proper way to treat intrinsic colors and reddening produce differences in the recovered value of w up to 3%. We estimate masses of host galaxies of PS1 supernovae and detect an insignificant difference in distance residuals of the full sample of 0.037 ± 0.031 mag for host galaxies with high and low masses. Assuming flatness and including systematic uncertainties in our analysis of only SNe measurements, we find w = -1.120+0.360-0.206(Stat)+0.269-0.291(Sys). With additional constraints from Baryon acoustic oscillation, cosmic microwave background (CMB) (Planck) and H0 measurements, we find w = -1.166+0.072-0.069 and Ωm = 0.280+0.013-0.012 (statistical and systematic errors added in quadrature). The significance of the inconsistency with w = -1 depends on whether we use Planck or Wilkinson Microwave Anisotropy Probe measurements of the CMB: wBAO+H0+SN+WMAP = -1.124+0.083-0.065.
Resumo:
Quantile normalization (QN) is a technique for microarray data processing and is the default normalization method in the Robust Multi-array Average (RMA) procedure, which was primarily designed for analysing gene expression data from Affymetrix arrays. Given the abundance of Affymetrix microarrays and the popularity of the RMA method, it is crucially important that the normalization procedure is applied appropriately. In this study we carried out simulation experiments and also analysed real microarray data to investigate the suitability of RMA when it is applied to dataset with different groups of biological samples. From our experiments, we showed that RMA with QN does not preserve the biological signal included in each group, but rather it would mix the signals between the groups. We also showed that the Median Polish method in the summarization step of RMA has similar mixing effect. RMA is one of the most widely used methods in microarray data processing and has been applied to a vast volume of data in biomedical research. The problematic behaviour of this method suggests that previous studies employing RMA could have been misadvised or adversely affected. Therefore we think it is crucially important that the research community recognizes the issue and starts to address it. The two core elements of the RMA method, quantile normalization and Median Polish, both have the undesirable effects of mixing biological signals between different sample groups, which can be detrimental to drawing valid biological conclusions and to any subsequent analyses. Based on the evidence presented here and that in the literature, we recommend exercising caution when using RMA as a method of processing microarray gene expression data, particularly in situations where there are likely to be unknown subgroups of samples.