148 resultados para Renewable Energy Distribution


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multiuser diversity (MUDiv) is one of the central concepts in multiuser (MU) systems. In particular, MUDiv allows for scheduling among users in order to eliminate the negative effects of unfavorable channel fading conditions of some users on the system performance. Scheduling, however, consumes energy (e.g., for making users' channel state information available to the scheduler). This extra usage of energy, which could potentially be used for data transmission, can be very wasteful, especially if the number of users is large. In this paper, we answer the question of how much MUDiv is required for energy limited MU systems. Focusing on uplink MU wireless systems, we develop MU scheduling algorithms which aim at maximizing the MUDiv gain. Toward this end, we introduce a new realistic energy model which accounts for scheduling energy and describes the distribution of the total energy between scheduling and data transmission stages. Using the fact that such energy distribution can be controlled by varying the number of active users, we optimize this number by either i) minimizing the overall system bit error rate (BER) for a fixed total energy of all users in the system or ii) minimizing the total energy of all users for fixed BER requirements. We find that for a fixed number of available users, the achievable MUDiv gain can be improved by activating only a subset of users. Using asymptotic analysis and numerical simulations, we show that our approach benefits from MUDiv gains higher than that achievable by generic greedy access algorithm, which is the optimal scheduling method for energy unlimited systems. © 2010 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Geraint Ellis and Richard Cowell explain the findings of the ‘Delivering renewable energy under devolution’ project, including some reasons for Scotland’s lead.

The UK has seen massive increases in renewable energy since 1998, with installed capacity growing from 2,600 MW to 12,300 MW in 2011. This has coincided with devolution and it is within Northern Ireland, Scotland and Wales that the greatest increases have been seen.

As devolved administrations now host half of the UK’s renewable energy capacity, their policies are critical to achieving the broader UK targets. This also provides a fascinating insight into what sort of approach works best, and why. This has been the focus of a two-year study, funded by the Economic and Social Research Council, involving universities from across the UK, which indicates that Scotland is leading the way on renewable energy.

All devolved governments have offered significant support to renewable energy but have different degrees of powers in relation to energy. Scotland’s success seems to be based on the centrality of energy issues to current political aspirations, particularly the SNP, but also has cross-party support. The research suggests that the consensus on the importance of renewable energy amongst élite interests in Scotland helps to explain why Scottish governments have been empowered and enabled to make robust use of the powers available.

As it has achieved successful growth in the sector, this too helps cultivate credibility among key business interests and gives increased leverage to its position in policy discussions with the UK Government. Scotland has been more consistent over time in presenting the expansion of renewable energy as a national economic agenda, rather than just an environmental or rural development agenda. The availability of larger, windy, but relatively less contested sites for onshore wind in Scotland has meant that more projects went through central consenting procedures rather than local planning authorities. Its enhanced support for wave and tidal power technologies is also notable. These political conditions have been harder to find in the rest of the UK, making progress a little more uncertain.

Northern Ireland has used its powers (which are more extensive than Scotland’s) to facilitate small-scale renewables and bio-fuel processes, with its liberalised planning regime offering an initial boost to expanding capacity.

This has contrasted with the position in Wales, which has least control over energy but the Welsh Government has adopted a more innovative approach to strategic spatial zoning; this appears to have pulled in a larger volume of onshore wind development interest than could be expected in a comparable region of England. A downside of the Welsh approach appears to be the fact that the concentration of these wind projects in these zones has triggered public opposition and political conflict.

It therefore appears that the powers available to the devolved governments do not seem to determine which country has been able to make greatest headway, with broader political commitments being more significant. Despite this, the research does not conclude that the actions and activities undertaken by the devolved governments are necessarily the most important factors in shaping the development of renewable energy in the UK. This is because devolution is still a relatively new dimension of energy governance in the UK and decisions affecting key drivers for renewable energy investment are still made mainly in Westminster, with the Treasury exercising close budgetary control. In all areas of the UK, grid capacity expansion remains slow to achieve. The major growth in offshore wind to date has been driven mainly by Westminster and cross-UK bodies with the most significant capacity growth being in English territorial waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, we demonstrate a very high-energy density and high-temperature stability capacitor based on SrTiO3-substituted BiFeO3 thin films. An energy density of 18.6 J/cm3 at 972 kV/cm is reported. The temperature coefficient of capacitance (TCC) was below 11% from room temperature up to 200°C. These results are of practical importance, because it puts forward a promising novel and environmentally friendly, lead-free material, for high-temperature applications in power electronics up to 200°C. Applications include capacitors for low carbon vehicles, renewable energy technologies, integrated circuits, and for the high-temperature aerospace sector. © 2013 Crown copyright

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most Wave Energy Converters (WECs) being developed are fundamentally different from known marine structures. Limited experience is a fundamental challenge for the design, especially issues concerning load assumptions and power estimates. Reynolds-Averaged Navier-Stokes (RANS) CFD methods are being used successfully in many areas of marine engineering. They have been shown to accurately simulate many hydrodynamic effects and are a helpful tool for investigating complex flows. The major drawback is the significant computational power required and the associated overhead with pre and post-processing. This paper presents the challenges and advantages in the application of RANS CFD methods in the design process of a wave energy converter and compares the time, labour and ultimately financial requirements for obtaining practical results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data processing is an essential part of Acoustic Doppler Profiler (ADP) surveys, which have become the standard tool in assessing flow characteristics at tidal power development sites. In most cases, further processing beyond the capabilities of the manufacturer provided software tools is required. These additional tasks are often implemented by every user in mathematical toolboxes like MATLAB, Octave or Python. This requires the transfer of the data from one system to another and thus increases the possibility of errors. The application of dedicated tools for visualisation of flow or geographic data is also often beneficial and a wide range of tools are freely available, though again problems arise from the necessity of transferring the data. Furthermore, almost exclusively PCs are supported directly by the ADP manufacturers, whereas small computing solutions like tablet computers, often running Android or Linux operating systems, seem better suited for online monitoring or data acquisition in field conditions. While many manufacturers offer support for developers, any solution is limited to a single device of a single manufacturer. A common data format for all ADP data would allow development of applications and quicker distribution of new post processing methodologies across the industry.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The water and wastewater industry in the UK accounts for around 3% of total energy use and just over 1% of total UK greenhouse gas emissions. Targets for greenhouse gas emissions reduction and higher renewable energy penetration, coupled with rising energy costs, growing demand for wastewater services and tightening EU water quality requirements, have led to an increased interest in alternative wastewater treatment methods. The use of short rotation coppice (SRC) willow for the treatment of wastewater effluent is one such alternative, which brings with it the dual benefits of wastewater treatment and production of biomass for energy. In order to assess the effectiveness of SRC willow, it is important to analyse the overall energy balance in terms of energy input versus energy output. This paper carries out an energy life cycle analysis of a specific SRC willow plantation in Northern Ireland to which farmyard washings (dirty water) are applied. The system boundaries include the establishment, maintenance, and harvesting of the plantation, along with the transport and drying of the wood for biomass combustion. The analysis shows that the overall energy balance is positive, and that the direct and indirect energy demands are 12% and 8% of gross energy production respectively. The energy demands of the plantation are compared with the energy required to treat an equivalent nutrient load in a conventional wastewater treatment plant. While a conventional plant consumes 2.6 MJ/m3 , the irrigation system consumes 1.6 MJ/m3 and the net energy production of the scenario is 48 MJ/m3 .

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This presentation will explore the  role that social acceptance of onshore wind can play in understanding and progressing the low carbon transition in Europe. Although this is commonly perceived as arising simply from the overall level of renewable energy generated (and ‘dirty’ energy displaced), its significance goes well beyond this as it helps us understand some of the key issues facing the electricity sector as a social-technical system.  As such it is not only a matter of delivering the necessary infrastructure, but requires the long term mediation of complex multi-governmental arrangements involving a very wide range of actors. The interests of these actors engage hugely different timescales, geographic scales of concern and rationalities that make the arena of social acceptance a cauldron of complexity, mediating between overlapping and incompatible concerns. The presentation will briefly review the nature of some of these relationships and discuss what this means for how we conceive and act on the social acceptance of wind, and what this means for the long term low carbon transition

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Renewable energy is high on international and national agendas. Currently, grid-connected photovoltaic (PV) systems are a popular technology to convert solar energy into electricity. Existing PV panels have a relatively low and varying output voltage so that the converter installed between the PVs and the grid should be equipped with high step-up and versatile control capabilities. In addition, the output current of PV systems is rich in harmonics which affect the power quality of the grid. In this paper, a new multi-stage hysteresis control of a step-up DC-DC converter is proposed for integrating PVs into a single-phase power grid. The proposed circuitry and control method is experimentally validated by testing on a 600W prototype converter. The developed technology has significant economic implications and could be applied to many distributed generation (DG) systems, especially for the developing countries which have a large number of small PVs connected to their single-phase distribution network. 

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The future European power system will have a hierarchical structure created by layers of system control from a Supergrid via regional high-voltage transmission through to medium and low-voltage distribution. Each level will have generation sources such as large-scale offshore wind, wave, solar thermal, nuclear directly connected to this Supergrid and high levels of embedded generation, connected to the medium-voltage distribution system. It is expected that the fuel portfolio will be dominated by offshore wind in Northern Europe and PV in Southern Europe. The strategies required to manage the coordination of supply-side variability with demand-side variability will include large scale interconnection, demand side management, load aggregation and storage in the context of the Supergrid combined with the Smart Grid. The design challenge associated with this will not only include control topology, data acquisition, analysis and communications technologies, but also the selection of fuel portfolio at a macro level. This paper quantifies the amount of demand side management, storage and so-called 'back-up generation' needed to support an 80% renewable energy portfolio in Europe by 2050. © 2013 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Wind power is one of the most developed renewable energy resources worldwide. To integrate offshore wind farms to onshore grids, the high-voltage direct current (HVDC) transmission cables interfaced with voltage source converters (VSCs) are considered to be a better solution than conventional approaches. Proper DC voltage indicates successive power transfer. To connect more than one onshore grid, the DC voltage droop control is one of the most popular methods to share the control burden between different terminals. However, the challenges are that small droop gains will cause voltage deviations, while higher droop gain settings will cause large oscillations. This study aims to enhance the performance of the traditional droop controller by considering the DC cable dynamics. Based on the backstepping control concept, DC cables are modelled with a series of capacitors and inductors. The final droop control law is deduced step-by-step from the original remote side. At each step the control error from the previous step is considered. Simulation results show that both the voltage deviations and oscillations can be effectively reduced using the proposed method. Further, power sharing between different terminals can be effectively simplified such that it correlates linearly with the droop gains, thus enabling simple yet accurate system operation and control.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper proposes a hierarchical energy management system for multi-source multi-product (MSMP) microgrids. Traditional energy hub based scheduling method is combined with a hierarchical control structure to incorporate transient characteristics of natural gas flow and dynamics of energy converters in microgrids. The hierarchical EMS includes a supervisory control layer, an optimizing control layer, and an execution control layer. In order to efficiently accommodate the systems multi time-scale characteristics, the optimizing control layer is decomposed into three sub-layers: slow, medium and fast. Thermal, gas and electrical management systems are integrated into the slow, medium, and fast control layer, respectively. Compared with wind energy, solar energy is easier to integrate and more suitable for the microgrid environment, therefore, potential impacts of the hierarchical EMS on MSMP microgrids is investigated based on a building energy system integrating photovoltaic and microturbines. Numerical studies indicate that by using a hierarchical EMS, MSMP microgrids can be economically operated. Also, interactions among thermal, gas, and electrical system can be effectively managed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the increasing utilization of combined heat and power plants (CHP), electrical, gas, and thermal systems are becoming tightly integrated in the urban energy system (UES). However, the three systems are usually planned and operated separately, ignoring their interactions and coordination. To address this issue, the coupling point of different systems in the UES is described by the energy hub model. With this model, an integrated load curtailment method is proposed for the UES. Then a Monte Carlo simulation based approach is developed to assess the reliability of coordinated energy supply systems. Based on this approach, a reliability-optimal energy hub planning method is proposed to accommodate higher renewable energy penetration. Numerical studies indicate that the proposed approach is able to quantify the UES reliability with different structures. Also, optimal energy hub planning scheme can be determined to ensure the reliability of the UES with high renewable penetration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

An automated solar reactor system was designed and built to carry out catalytic pyrolysis of scrap rubber tires at 550°C. To maximize solar energy concentration, a two degrees-of-freedom automated sun tracking system was developed and implemented. Both the azimuth and zenith angles were controlled via feedback from six photo-resistors positioned on a Fresnel lens. The pyrolysis of rubber tires was tested with the presence of two types of acidic catalysts, H-beta and H-USY. Additionally, a photoactive TiO<inf>2</inf> catalyst was used and the products were compared in terms of gas yields and composition. The catalysts were characterized by BET analysis and the pyrolysis gases and liquids were analyzed using GC-MS. The oil and gas yields were relatively high with the highest gas yield reaching 32.8% with H-beta catalyst while TiO<inf>2</inf> gave the same results as thermal pyrolysis without any catalyst. In the presence of zeolites, the dominant gasoline-like components in the gas were propene and cyclobutene. The TiO<inf>2</inf> and non-catalytic experiments produced a gas containing gasoline-like products of mainly isoprene (76.4% and 88.4% respectively). As for the liquids they were composed of numerous components spread over a wide distribution of C<inf>10</inf> to C<inf>29</inf> hydrocarbons of naphthalene and cyclohexane/ene derivatives.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper outlines a forensic method for analysing the energy, environmental and comfort performance of a building. The method has been applied to a recently developed event space in an Irish public building, which was evaluated using on-site field studies, data analysis, building simulation and occupant surveying. The method allows for consideration of both the technological and anthropological aspects of the building in use and for the identification of unsustainable operational practice and emerging problems. The forensic analysis identified energy savings of up to 50%, enabling a more sustainable, lower-energy operational future for the building. The building forensic analysis method presented in this paper is now planned for use in other public and commercial buildings.