63 resultados para Radisson, Pierre Esprit, ca. 1636-1710


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combretastatin-A4 (CA-4) is a natural derivative of the African willow tree Combretum caffrum. CA-4 is one of the most potent antimitotic components of natural origin, but it is, however, intrinsically unstable. A novel series of CA-4 analogs incorporating a 3,4-diaryl-2-azetidinone (β-lactam) ring were designed and synthesized with the objective to prevent cis -trans isomerization and improve the intrinsic stability without altering the biological activity of CA-4. Evaluation of selected β-lactam CA-4 analogs demonstrated potent antitubulin, antiproliferative, and antimitotic effects in human leukemia cells. A lead β-lactam analog, CA-432, displayed comparable antiproliferative activities with CA-4. CA-432 induced rapid apoptosis in HL-60 acute myeloid leukemia cells, which was accompanied by depolymerization of the microtubular network, poly(ADP-ribose) polymerase cleavage, caspase-3 activation, and Bcl-2 cleavage. A prolonged G(2)M cell cycle arrest accompanied by a sustained phosphorylation of mitotic spindle checkpoint protein, BubR1, and the antiapoptotic proteins Bcl-2 and Bcl-x(L) preceded apoptotic events in K562 chronic myeloid leukemia (CML) cells. Molecular docking studies in conjunction with comprehensive cell line data rule out CA-4 and β-lactam derivatives as P-glycoprotein substrates. Furthermore, both CA-4 and CA-432 induced significantly more apoptosis compared with imatinib mesylate in ex vivo samples from patients with CML, including those positive for the T315I mutation displaying resistance to imatinib mesylate and dasatinib. In summary, synthetic intrinsically stable analogs of CA-4 that display significant clinical potential as antileukemic agents have been designed and synthesized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present photometric and spectroscopic observations of the interacting transient SN 2009ip taken during the 2013 and 2014 observing seasons. We characterize the photometric evolution as a steady and smooth decline in all bands, with a decline rate that is slower than expected for a solely Co-56-powered supernova at late phases. No further outbursts or eruptions were seen over a two year period from 2012 December until 2014 December. SN 2009ip remains brighter than its historic minimum from pre-discovery images. Spectroscopically, SN 2009ip continues to be dominated by strong, narrow (less than or similar to 2000 km s(-1)) emission lines of H, He, Ca, and Fe. While we make tenuous detections of [Fe II] lambda 7155 and [O I] lambda lambda 6300, 6364 lines at the end of 2013 June and the start of 2013 October, respectively, we see no strong broad nebular emission lines that could point to a core-collapse origin. In general, the lines appear relatively symmetric, with the exception of our final spectrum in 2014 May, when we observe the appearance of a redshifted shoulder of emission at +550 km s(-1). The lines are not blueshifted, and we see no significant near-or mid-infrared excess. From the spectroscopic and photometric evolution of SN 2009ip until 820 d after the start of the 2012a event, we still see no conclusive evidence for core-collapse, although whether any such signs could be masked by ongoing interaction is unclear.