125 resultados para Pathological
Resumo:
Tissue microarray (TMA) is a high throughput analysis tool to identify new diagnostic and prognostic markers in human cancers. However, standard automated method in tumour detection on both routine histochemical and immunohistochemistry (IHC) images is under developed. This paper presents a robust automated tumour cell segmentation model which can be applied to both routine histochemical tissue slides and IHC slides and deal with finer pixel-based segmentation in comparison with blob or area based segmentation by existing approaches. The presented technique greatly improves the process of TMA construction and plays an important role in automated IHC quantification in biomarker analysis where excluding stroma areas is critical. With the finest pixel-based evaluation (instead of area-based or object-based), the experimental results show that the proposed method is able to achieve 80% accuracy and 78% accuracy in two different types of pathological virtual slides, i.e., routine histochemical H&E and IHC images, respectively. The presented technique greatly reduces labor-intensive workloads for pathologists and highly speeds up the process of TMA construction and provides a possibility for fully automated IHC quantification.
Resumo:
Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.
Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.
Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.
Resumo:
A single founder mutation resulting in a Ser163Arg substitution in the C1QTNF5 gene product causes autosomal dominant late-onset retinal macular degeneration (L-ORMD) in humans, which has clinical and pathological features resembling age-related macular degeneration. We generated and characterised a mouse
Resumo:
Traditionally, education and training in pathology has been delivered using textbooks, glass slides and conventional microscopy. Over the last two decades, the number of web-based pathology resources has expanded dramatically with centralized pathological resources being delivered to many students simultaneously. Recently, whole slide imaging technology allows glass slides to be scanned and viewed on a computer screen via dedicated software. This technology is referred to as virtual microscopy and has created enormous opportunities in pathological training and education. Students are able to learn key histopathological skills, e.g. to identify areas of diagnostic relevance from an entire slide, via a web-based computer environment. Students no longer need to be in the same room as the slides. New human–computer interfaces are also being developed using more natural touch technology to enhance the manipulation of digitized slides. Several major initiatives are also underway introducing online competency and diagnostic decision analysis using virtual microscopy and have important future roles in accreditation and recertification. Finally, researchers are investigating how pathological decision-making is achieved using virtual microscopy and modern eyetracking devices. Virtual microscopy and digital pathology will continue to improve how pathology training and education is delivered.
Resumo:
Background:
The physical periphery of a biological cell is mainly described by signaling pathways which are triggered by transmembrane proteins and receptors that are sentinels to control the whole gene regulatory network of a cell. However, our current knowledge about the gene regulatory mechanisms that are governed by extracellular signals is severely limited.Results: The purpose of this paper is three fold. First, we infer a gene regulatory network from a large-scale B-cell lymphoma expression data set using the C3NET algorithm. Second, we provide a functional and structural analysis of the largest connected component of this network, revealing that this network component corresponds to the peripheral region of a cell. Third, we analyze the hierarchical organization of network components of the whole inferred B-cell gene regulatory network by introducing a new approach which exploits the variability within the data as well as the inferential characteristics of C3NET. As a result, we find a functional bisection of the network corresponding to different cellular components.
Conclusions:
Overall, our study allows to highlight the peripheral gene regulatory network of B-cells and shows that it is centered around hub transmembrane proteins located at the physical periphery of the cell. In addition, we identify a variety of novel pathological transmembrane proteins such as ion channel complexes and signaling receptors in B-cell lymphoma. © 2012 Simoes et al.; licensee BioMed Central Ltd.
Resumo:
High ambient glucose activates intracellular signaling pathways to induce the expression of extracellular matrix and cytokines such as connective tissue growth factor (CTGF). Cell responses to CTGF in already glucose-stressed cells may act to transform the mesangial cell phenotype leading to the development of glomerulosclerosis. We analyzed cell signaling downstream of CTGF in high glucose-stressed mesangial cells to model signaling in the diabetic milieu. The addition of CTGF to primary human mesangial cells activates cell migration which is associated with a PKC-zeta-GSK3beta signaling axis. In high ambient glucose basal PKC-zeta and GSK3beta phosphorylation levels are selectively increased and CTGF-stimulated PKC-zeta and GSK3beta phosphorylation was impaired. These effects were not induced by osmotic changes. CTGF-driven profibrotic cell signaling as determined by p42/44 MAPK and Akt phosphorylation was unaffected by high glucose. Nonresponsiveness of the PKC-zeta-GSK3beta signaling axis suppressed effective remodeling of the microtubule network necessary to support cell migration. However, interestingly the cells remain plastic: modulation of glucose-induced PKC-beta activity in human mesangial cells reversed some of the pathological effects of glucose damage in these cells. We show that inhibition of PKC-beta with LY379196 and PKC-beta siRNA reduced basal PKC-zeta and GSK3beta phosphorylation in human mesangial cells exposed to high glucose. CTGF stimulation under these conditions again resulted in PKC-zeta phosphorylation and human mesangial cell migration. Regulation of PKC-zeta by PKC-beta in this instance may establish PKC-zeta as a target for constraining the progression of mesangial cell dysfunction in the pathogenesis of diabetic nephropathy.
Resumo:
Alzheimer's disease (AD) and age-related macular degeneration (AMD) are both neurodegenerative disorders which share common pathological and biochemical features of the complement pathway. The aim of this study was to investigate whether there is an association between well replicated AMD genetic risk factors and AD. A large cohort of AD (n = 3898) patients and controls were genotyped for single nucleotide polymorphisms (SNPs) in the complement factor H (CFH), the Age-related maculopathy susceptibility protein 2 (ARMS2) the complement component 2 (C2), the complement factor B (CFB), and the complement component 3 (C3) genes. While significant but modest associations were identified between the complement factor H, the age-related maculopathy susceptibility protein 2, and the complement component 3 single nucleotide polymorphisms and AD, these were different in direction or genetic model to that observed in AMD. In addition the multilocus genetic model that predicts around a half of the sibling risk for AMD does not predict risk for AD. Our study provides further support to the hypothesis that while activation of the alternative complement pathway is central to AMD pathogenesis, it is less involved in AD.
Resumo:
A key pathological feature of late-onset Alzheimer's disease (LOAD) is the abnormal extracellular accumulation of the amyloid-ß (Aß) peptide. Thus, altered Aß degradation could be a major contributor to the development of LOAD. Variants in the gene encoding the Aß-degrading enzyme, angiotensin-1 converting enzyme (ACE) therefore represent plausible candidates for association with LOAD pathology and risk. Following Alzgene meta-analyses of all published case-control studies, the ACE variants rs4291 and rs1800764 showed significant association with LOAD risk. Furthermore ACE haplotypes are associated with both plasma ACE levels and LOAD risk. We tested three ACE variants (rs4291, rs4343, and rs1800764) for association with LOAD in ten Caucasian case-control populations (n = 8,212). No association was found using multiple logistic models (all p > 0.09). We found no population heterogeneity (all p > 0.38) or evidence for association with LOAD risk following meta-analysis of the ten populations for rs4343 (OR = 1.00), rs4291 (OR = 0.97), or rs1800764 (OR = 0.99). Although we found no haplotypic association in our complete dataset (p = 0.51), a significant global haplotypic p-value was observed in one population (p = 0.007) due to an association of the H3 haplotype (OR = 0.72, p = 0.02) and a trend towards an association of H4 (OR = 1.38, p = 0.09) and H7 (OR = 2.07, p = 0.08) although these did not survive Bonferroni correction. Previously reported associations of ACE variants with LOAD will be diminished following this study. At best, ACE variants have modest effect sizes, which are likely part of a complex interaction between genetic, phenotypic and pharmacological effects that would be undetected in traditional case-control studies.
Resumo:
The propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDV(SH)) and show that this virus rapidly circumvents the blood-brain and blood-cerebrospinal fluid (CSF) barriers to spread into the subarachnoid space to induce dramatic viral meningoencephalitis. The use of recombinant CDV(SH) (rCDV(SH)) expressing enhanced green fluorescent protein (EGFP) or red fluorescent protein (dTomato) facilitated the sensitive pathological assessment of routes of virus spread in vivo. Infection of ferrets with these viruses led to the full spectrum of clinical signs typically associated with distemper in dogs during a rapid, fatal disease course of approximately 2 weeks. Comparison with the ferret-adapted CDV(5804P) and the prototypic wild-type CDV(R252) showed that hematogenous infection of the choroid plexus is not a significant route of virus spread into the CSF. Instead, viral spread into the subarachnoid space in rCDV(SH)-infected animals was triggered by infection of vascular endothelial cells and the hematogenous spread of virus-infected leukocytes from meningeal blood vessels into the subarachnoid space. This resulted in widespread infection of cells of the pia and arachnoid mater of the leptomeninges over large areas of the cerebral hemispheres. The ability to sensitively assess the in vivo spread of a neurovirulent strain of CDV provides a novel model system to study the mechanisms of virus spread into the CSF and the pathogenesis of acute viral meningitis.
Resumo:
Background: Popular approaches in human tissue-based biomarker discovery include tissue microarrays (TMAs) and DNA Microarrays (DMAs) for protein and gene expression profiling respectively. The data generated by these analytic platforms, together with associated image, clinical and pathological data currently reside on widely different information platforms, making searching and cross-platform analysis difficult. Consequently, there is a strong need to develop a single coherent database capable of correlating all available data types.
Method: This study presents TMAX, a database system to facilitate biomarker discovery tasks. TMAX organises a variety of biomarker discovery-related data into the database. Both TMA and DMA experimental data are integrated in TMAX and connected through common DNA/protein biomarkers. Patient clinical data (including tissue pathological data), computer assisted tissue image and associated analytic data are also included in TMAX to enable the truly high throughput processing of ultra-large digital slides for both TMAs and whole slide tissue digital slides. A comprehensive web front-end was built with embedded XML parser software and predefined SQL queries to enable rapid data exchange in the form of standard XML files.
Results & Conclusion: TMAX represents one of the first attempts to integrate TMA data with public gene expression experiment data. Experiments suggest that TMAX is robust in managing large quantities of data from different sources (clinical, TMA, DMA and image analysis). Its web front-end is user friendly, easy to use, and most importantly allows the rapid and easy data exchange of biomarker discovery related data. In conclusion, TMAX is a robust biomarker discovery data repository and research tool, which opens up the opportunities for biomarker discovery and further integromics research.
Resumo:
Background: Ineffective risk stratification can delay diagnosis of serious disease in patients with hematuria. We applied a systems biology approach to analyze clinical, demographic and biomarker measurements (n = 29) collected from 157 hematuric patients: 80 urothelial cancer (UC) and 77 controls with confounding pathologies.
Methods: On the basis of biomarkers, we conducted agglomerative hierarchical clustering to identify patient and biomarker clusters. We then explored the relationship between the patient clusters and clinical characteristics using Chi-square analyses. We determined classification errors and areas under the receiver operating curve of Random Forest Classifiers (RFC) for patient subpopulations using the biomarker clusters to reduce the dimensionality of the data.
Results: Agglomerative clustering identified five patient clusters and seven biomarker clusters. Final diagnoses categories were non-randomly distributed across the five patient clusters. In addition, two of the patient clusters were enriched with patients with ‘low cancer-risk’ characteristics. The biomarkers which contributed to the diagnostic classifiers for these two patient clusters were similar. In contrast, three of the patient clusters were significantly enriched with patients harboring ‘high cancer-risk” characteristics including proteinuria, aggressive pathological stage and grade, and malignant cytology. Patients in these three clusters included controls, that is, patients with other serious disease and patients with cancers other than UC. Biomarkers which contributed to the diagnostic classifiers for the largest ‘high cancer- risk’ cluster were different than those contributing to the classifiers for the ‘low cancer-risk’ clusters. Biomarkers which contributed to subpopulations that were split according to smoking status, gender and medication were different.
Conclusions: The systems biology approach applied in this study allowed the hematuric patients to cluster naturally on the basis of the heterogeneity within their biomarker data, into five distinct risk subpopulations. Our findings highlight an approach with the promise to unlock the potential of biomarkers. This will be especially valuable in the field of diagnostic bladder cancer where biomarkers are urgently required. Clinicians could interpret risk classification scores in the context of clinical parameters at the time of triage. This could reduce cystoscopies and enable priority diagnosis of aggressive diseases, leading to improved patient outcomes at reduced costs. © 2013 Emmert-Streib et al; licensee BioMed Central Ltd.
Resumo:
Inflammation and TNF-alpha signaling play a central role in most of the pathological conditions where cell transplantation could be applied. As shown by initial experiments, embryonic stem (ES) cells and ES-cell derived vascular cells express very low levels of TNF-alpha receptor I (TNFRp55) and thus do not induce cytokine expression in response to TNF-alpha stimulation. Transient transfection analysis of wild-type or deletion variants of the TNFRp55 gene promoter showed a strong activity for a 250-bp fragment in the upstream region of the gene. This activity was abolished by mutations targeting the Sp1/Sp3 or AP1 binding sites. Moreover, treatment with trichostatin A (TSA) led to a pronounced increase in TNFRp55 mRNA and promoter activity. Overexpression of Sp1 or c-fos further enhanced the TSA-induced luciferase activity, and this response was attenuated by Sp3 or c-jun coexpression. Additional experiments revealed that TSA did not affect the Sp1/Sp3 ratio but caused transcriptional activation of the c-fos gene. Thus, we provide the first evidence that ES and ES-cell-derived vascular cells lack cytokine expression in response to TNF-alpha stimulation due to low levels of c-fos and transcriptional activation of Sp1 that can be regulated by inhibition of histone deacetylase activity.
Resumo:
An experimental oral pig model was used to assess the pathogenic and immunogenic potential of Yersinia enterocolitica serotype O:8 wild-type strain 8081-L2 and its lipopolysaccharide (LPS) mutant derivatives: a spontaneous rough mutant 8081-R2, strain 8081-DeltawzzGB expressing O-antigen with uncontrolled chain lengths, and strain 8081-wbcEGB expressing semirough LPS with only one O-unit. Microbiological and immunological parameters of the infected pigs were followed from day 7 to 60 postinfection. The wild-type and all LPS mutant strains persisted in the lymphoid tissue of tonsils and small intestines, causing asymptomatic infection without any pathological changes. Although the pig is known as a reservoir of Yersiniae, a precise analysis of pathogenic and immunogenic parameters based on different in vitro tests (hematological response, killing ability of leukocytes and blood sera, antibody response, hydrogen peroxide production by macrophages, classical and alternative pathways of complement activation), revealed significant attenuation in the pathogenicity of the LPS mutant strains but not the loss of immunogenic potential. In comparison with the other strains, strain 8081-DeltawzzGB demonstrated more continuous leucocytosis with monocytosis, higher invasive potential, significant activation of hydrogen peroxide production by macrophages and an effective immunoglobulin G immune response accompanied by relevant histological immunomorphological rearrangements.
Resumo:
Adrenomedullin (AM) is an important regulatory peptide involved in both physiological and pathological states. We have previously demonstrated the existence of a specific AM-binding protein (AMBP-1) in human plasma. In the present study, we developed a nonradioactive ligand blotting assay, which, together with high pressure liquid chromatography/SDS-polyacrylamide gel electrophoresis purification techniques, allowed us to isolate AMBP-1 to homogeneity. The purified protein was identified as human complement factor H. We show that AM/factor H interaction interferes with the established methodology for quantification of circulating AM. Our data suggest that this routine procedure does not take into account the AM bound to its binding protein. In addition, we show that factor H affects AM in vitro functions. It enhances AM-mediated induction of cAMP in fibroblasts, augments the AM-mediated growth of a cancer cell line, and suppresses the bactericidal capability of AM on Escherichia coli. Reciprocally, AM influences the complement regulatory function of factor H by enhancing the cleavage of C3b via factor I. In summary, we report on a potentially new regulatory mechanism of AM biology, the influence of factor H on radioimmunoassay quantification of AM, and the possible involvement of AM as a regulator of the complement cascade.
Resumo:
Papillary glioneuronal tumor (PGNT) was first described as a distinct clinic-pathological entity by Komori et al. in 1998. Since then it has been included as a mixed neuronal-glial tumor in the revised WHO (2007) classification of central nervous system tumors. On brain imaging, it appears as a demarcated, solid to cystic, contrast-enhancing mass usually located in the temporal lobe. Histologically, it is considered a biphasic tumor characterized by small cuboidal GFAP-positive astrocytes around hyalinised blood vessels and synaptophysin-positive interpapillary collections of neurocytes, large neurons and intermediate-sized "ganglioid cells". Although they are generally regarded as benign WHO Grade I tumors, recent reports have described more pathologically aggressive features. To date, these reports have all been single lesions.