133 resultados para Pareto solution
Resumo:
In the presence of inhomogeneities, defects and currents, the equations describing a Bose-condensed ensemble of alkali atoms have to be solved numerically. By combining both linear and nonlinear equations within a Discrete Variable Representation framework, we describe a computational scheme for the solution of the coupled Bogoliubov-de Gennes (BdG) and nonlinear Schrodinger (NLS) equations for fields in a 3D spheroidal potential. We use the method to calculate the collective excitation spectrum and quasiparticle mode densities for excitations of a Bose condensed gas in a spheroidal trap. The method is compared against finite-difference and spectral methods, and we find the DVR computational scheme to be superior in accuracy and efficiency for the cases we consider. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We present a study on the effect of the alkyl chain length of the imidazolium ring in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [C1CnIm][NTf2] (n = 2 to 10), on the mixing properties of (ionic liquid + alcohol) mixtures (enthalpy and volume). We have measured small excess molar volumes with highly asymmetric curves as a function of mole fraction composition (S-shape) with more negative values in the alcohol-rich regions. The excess molar volumes increase with the increase of the alkyl-chain length of the imidazolium cation of the ionic liquid. The values of the partial molar excess enthalpy and the enthalpy of mixing are positive and, for the case of methanol, do not vary monotonously with the length of the alkyl side-chain of the cation on the ionic liquid – increasing from n = 2 to 6 and then decreasing from n = 8. This non-monotonous variation is explained by a more favourable interaction of methanol with the cation head group of the ionic liquid for alkyl chains longer than eight carbon atoms. It is also observed that the mixing is less favourable for the smaller alcohols, the enthalpy of mixing decreasing to less positive values as the alkyl chain of the alcohol increases. Based on the data from this work and on the knowledge of the vapour pressure of {[C1CnIm][NTf2] + alcohol} binary mixtures at T = 298 K reported in the literature, the excess Gibbs free energy, excess enthalpy and excess entropy could be then calculated and it was observed that these mixtures behave like the ones constituted by a non-associating and a non-polar component, with its solution behaviour being determined by the enthalpy.
Resumo:
Variable-temperature magnetic susceptibility measurements in the solid state of the bis complex of tris(1-pyrazolyl)-methane with Fe(II), [Fe(tpm)2](ClO4)2, suggest the existence of singlet-quintet spin crossover with the singlet isomer largely favored at room temperature. In acetonitrile solution, measurement of the absorption spectrum as a function of temperature reveals a spin equilibrium with the quintet population varying from ca. 6% at 233 K to ca. 30% at 295 K. When the complex in solution is irradiated with a laser pulse at wavelengths within the ligand field absorption band of the singlet isomer, ground-state depletion occurs within the pulse duration followed by fast recovery to the original absorbance level with a time constant of 25 +/- 5ns. The recovery time is virtually independent of temperature over the range +23 to -43-degrees-C, but the signal:noise ratio of the transient signals increases with decreasing temperature. The effect was observable at several monitoring wavelengths spanning the LF and MLCT absorption regions of the complex but only when the irradiation wavelength fell within the LF absorption region. Irradiation within the MLCT band produced no effect other than that of laser pulse scatter. The observations are interpreted in terms of photoperturbation of the singlet-quintet spin state equilibrium, which in this case occurs solely through excitation in the ligand field absorption region of the complex and is the first reported instance of this type for a spin-crossover complex in solution.
Resumo:
Relaxation of the 1A1 half arrow right over half arrow left 5T2 spin equilibrium in acetonitrile of the complex of Fe(II) with the multidentate pyridyl macrocyclic ligand N,N',N''-tris(2-pyridylmethyl)-1,4,7-triazacyclodecane (tp[10]aneN3) after perturbation by a pulsed laser provides the first example of biphasic kinetics for spin crossover in solution with a fast (tau
ABSORPTION-SPECTRA AND DYNAMICS OF CHARGE-TRANSFER EXCITED-STATES OF COPPER(I) COMPLEXES IN SOLUTION
Resumo:
Quantifying nutrient and sediment loads in catchments is dif?cult owing to diffuse controls related to storm hydrology. Coarse sampling and interpolation methods are prone to very high uncertainties due to under-representation of high discharge, short duration events. Additionally, important low-?ow processes such as diurnal signals linked to point source impacts are missed. Here we demonstrate a solution based on a time-integrated approach to sampling with a standard 24 bottle autosampler con?gured to take a sample every 7 h over a week according to a Plynlimon design. This is evaluated with a number of other sampling strategies using a two-year dataset of sub-hourly discharge and phosphorus concentration data. The 24/7 solution is shown to be among the least uncertain in estimating load (inter-quartile range: 96% to 110% of actual load in year 1 and 97% to 104% in year 2) due to the increased frequency raising the probability of sampling storm events and point source signals. The 24/7 solution would appear to be most parsimonious in terms of data coverage and certainty, process signal representation, potential laboratory commitment, technology requirements and the ability to be widely deployed in complex catchments.
Resumo:
The dyes Nile Blue (C I Basic Blue 12) and Thionine (C I 52000) were examined in both ionic and neutral forms in different solvents using NMR and UV-visible spectroscopy to firmly establish the structures of the molecules and to assess the nature and extent of their aggregation H-1 and C-13 NMR assignments and chemical shift data were used together with nuclear Overhauser effect information to propose a self-assembly structure These data were supplemented with variable temperature dilution and diffusion-based experimental results using H-1 NMR spectroscopy thereby enabling extended aggregate structures to be assessed in terms of the relative strength of self-association and the extent to which extended aggregates could form (C) 2010 Elsevier Ltd All rights reserved