134 resultados para Nitric oxide synthase 3 polymorphisms


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radiation-induced bystander effect (RIBE) increases the probability of cellular response and therefore has important implications for cancer risk assessment following low-dose irradiation and for the likelihood of secondary cancers after radiotherapy. However, our knowledge of bystander signaling factors, especially those having long half-lives, is still limited. The present study found that, when a fraction of cells within a glioblastoma population were individually irradiated with helium ions from a particle microbeam, the yield of micronuclei (MN) in the nontargeted cells was increased, but these bystander MN were eliminated by treating the cells with either aminoguanidine (an inhibitor of inducible nitric oxide (NO) synthase) or anti-transforming growth factor beta1 (anti-TGF-beta1), indicating that NO and TGF-beta1 are involved in the RIBE. Intracellular NO was detected in the bystander cells, and additional TGF-beta1 was detected in the medium from irradiated T98G cells, but it was diminished by aminoguanidine. Consistent with this, an NO donor, diethylamine nitric oxide (DEANO), induced TGF-beta1 generation in T98G cells. Conversely, treatment of cells with recombinant TGF-beta1 could also induce NO and MN in T98G cells. Treatment of T98G cells with anti-TGF-beta1 inhibited the NO production when only 1% of cells were targeted, but not when 100% of cells were targeted. Our results indicate that, downstream of radiation-induced NO, TGF-beta1 can be released from targeted T98G cells and plays a key role as a signaling factor in the RIBE by further inducing free radicals and DNA damage in the nontargeted bystander cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER)(1). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes(2). Controversy exists, however, concerning whether ER has a role outside the nucleus(3), particularly in mediating the cardiovascular protective effects of oestrogen(4). Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85 alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ERa are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85 alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ERa with PI(3)K.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS:
Chronic inhibition of nitric oxide (NO) synthesis is associated with hypertension, myocardial ischemia, oxidative stress and hypertrophy; expression of the vasodilator peptide, adrenomedullin (AM) and its receptors is augmented in cardiomyocytes, indicating that the myocardial AM system may be activated in response to pressure loading and ischemic insult to serve a counter-regulatory, cardio-protective role. The study examined the hypothesis that oxidative stress and hypertrophic remodeling in NO-deficient cardiomyocytes are attenuated by adenoviral vector-mediated delivery of the human adrenomedullin (hAM) gene in vivo.

METHODS:
The NO synthesis inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME, 15mg . kg(-1) . day(-1)) was given to rats for 4 weeks following systemic administration via the tail vein of a single injection of either adenovirus harbouring hAM cDNA under the control of the cytomegalovirus promoter-enhancer (Ad.CMV-hAM-4F2), or for comparison, adenovirus alone (Ad.Null) or saline. Cardiomyocytes were subsequently isolated for assessment of the influence of each intervention on parameters of oxidative stress and hypertrophic remodelling.

RESULTS: Cardiomyocyte expression of the transgene persisted for > or =4 weeks following systemic administration of adenoviral vector. In L-NAME treated rats, relative to Ad.Null or saline administration, Ad.CMV-hAM-4F2 (i) reduced augmented cardiomyocyte membrane protein oxidation and mRNA expression of pro-oxidant (p22phox) and anti-oxidant (SOD-3, GPx) genes; (ii) attenuated increased cardiomyocyte width and mRNA expression of hypertrophic (sk-alpha-actin) and cardio-endocrine (ANP) genes; (iii) did not attenuate hypertension.

CONCLUSIONS: Adenoviral vector mediated delivery of hAM resulted in attenuation of myocardial oxidative stress and hypertrophic remodelling in the absence of blood pressure reduction in this model of chronic NO-deficiency. These findings are consistent with a direct cardio-protective action in the myocardium of locally-derived hAM which is not dependant on NO generation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined the extent to which the systemic and renal vasoconstriction induced by nitric oxide (NO) inhibition in vivo is mediated by endothelin (ET). We examined the effects of BQ-610, a specific ETA-receptor antagonist, after NO inhibition with N omega-nitro-L-arginine methyl ester (L-NAME) in the anesthetized rat. Mean arterial pressure (MAP) increased after L-NAME infusion from 107 +/- 2 to 133 +/- 3 mmHg (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Obestatin is a recently-discovered gastrointestinal peptide with established metabolic actions, which is linked to diabetes and may exert cardiovascular benefits. Here we aimed to investigate the specific effects of obestatin on vascular relaxation. Experimental approach: Cumulative relaxation responses to obestatin peptides were assessed in isolated rat aorta and mesenteric artery (n=8) in the presence/absence of selective inhibitors. Complementary studies were performed in cultured bovine aortic endothelial cells (BAEC). Key results: Obestatin peptides elicited concentration-dependent relaxation in both aorta and mesenteric artery. Responses to full-length obestatin(1-23) were greater than those to obestatin(1-10) and obestatin(11-23). Obestatin(1-23)-induced relaxation was attenuated by endothelial denudation, L-NAME (NO synthase inhibitor), high extracellular K(+) , GDP-ß-S (G protein inhibitor), MDL-12,330A (adenylate cyclase inhibitor), wortmannin (PI3K inhibitor), KN-93 (CaMKII inhibitor), ODQ (guanylate cyclase inhibitor) and iberiotoxin (BK(Ca) blocker), suggesting that it is mediated by an endothelium-dependent NO signalling cascade involving an adenylate cyclase-linked G protein-coupled receptor, PI3K/Akt, Ca(2+) -dependent eNOS activation, soluble guanylate cyclase and modulation of vascular smooth muscle K(+) . Supporting data from BAEC indicated that nitrite production, intracellular Ca(2+) and Akt phosphorylation were increased after exposure to obestatin(1-23). Relaxations to obestatin(1-23) were unaltered by inhibitors of candidate endothelium-derived hyperpolarising factors (EDHFs) and combined SK(Ca) /IK(Ca) blockade, suggesting that EDHF-mediated pathways were not involved. Conclusions and Implications: Obestatin produces significant vascular relaxation via specific activation of endothelium-dependent NO signalling. These actions may be important in normal regulation of vascular function and are clearly relevant to diabetes, a condition characterised by endothelial dysfunction and cardiovascular complications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the biological activity of NO and its chemistry is complex. The objectives of this study were to investigate the influence of oxygen tension on the cytotoxicity of the NO• donor DETA/NO and to determine the effects of oxygen tension on the key RNS (reactive nitrogen species) responsible for any subsequent toxicity. The findings presented in this study indicate that the DETA/NO-mediated cytotoxic effects were enhanced under hypoxic conditions. Further investigations revealed that neither ONOO⁻ (peroxynitrite) nor nitroxyl was generated. Fluorimetric analysis in the presence of scavengers suggest for the first time that another RNS, dinitrogen trioxide may be responsible for the cytotoxicity with DETA/NO. Results showed destabilization of HIF (hypoxia inducible factor)-1α and depletion of GSH levels following the treatment with DETA/NO under hypoxia, which renders cells more susceptible to DETA/NO cytotoxicity, and could account for another mechanism of DETA/NO cytotoxicity under hypoxia. In addition, there was significant accumulation of nuclear p53, which showed that p53 itself might be a target for S-nitrosylation following the treatment with DETA/NO. Both the intrinsic apoptotic pathway and the Fas extrinsic apoptotic pathway were also activated. Finally, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is another important S-nitrosylated protein that may possibly play a key role in DETA/NO-mediated apoptosis and cytotoxicity. Therefore this study elucidates further mechanisms of DETA/NO mediated cytotoxicity with respect to S-nitrosylation that is emerging as a key player in the signalling and detection of DETA/NO-modified proteins in the tumour microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H-2 per g of HKUST-1 (22.7 mg g(-1), 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-1), 3.6 wt %) at 10 bar. Adsorption of D-2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at < 100 mbar) times the H-2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of similar to 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.