86 resultados para Networks analysis
Resumo:
Spectrum efficient multiple relay selection strategy for two-hop cooperative decode-and-forward relay networks is proposed for the case when the sum power among all relay nodes is limited. Based on the outage-multiplexing tradeoff (OMT), the number of active relay nodes is maximized so that the resulting sum-relay capacity is maximized while each relay outage capacity remains greater than or equal to a certain target level. Using asymptotic analysis, it is shown that for the proposed OMT relaying strategy the associated multiplexing and cooperative system diversity gains improve proportionally with the number of active relay nodes. It is also shown analytically that the proposed OMT relaying outperforms the conventional opportunistic single relaying in terms of the sum-relay capacity.
Resumo:
Purpose: The purpose of this paper is to present an artificial neural network (ANN) model that predicts earthmoving trucks condition level using simple predictors; the model’s performance is compared to the respective predictive accuracy of the statistical method of discriminant analysis (DA).
Design/methodology/approach: An ANN-based predictive model is developed. The condition level predictors selected are the capacity, age, kilometers travelled and maintenance level. The relevant data set was provided by two Greek construction companies and includes the characteristics of 126 earthmoving trucks.
Findings: Data processing identifies a particularly strong connection of kilometers travelled and maintenance level with the earthmoving trucks condition level. Moreover, the validation process reveals that the predictive efficiency of the proposed ANN model is very high. Similar findings emerge from the application of DA to the same data set using the same predictors.
Originality/value: Earthmoving trucks’ sound condition level prediction reduces downtime and its adverse impact on earthmoving duration and cost, while also enhancing the maintenance and replacement policies effectiveness. This research proves that a sound condition level prediction for earthmoving trucks is achievable through the utilization of easy to collect data and provides a comparative evaluation of the results of two widely applied predictive methods.
Resumo:
Motivation: To date, Gene Set Analysis (GSA) approaches primarily focus on identifying differentially expressed gene sets (pathways). Methods for identifying differentially coexpressed pathways also exist but are mostly based on aggregated pairwise correlations, or other pairwise measures of coexpression. Instead, we propose Gene Sets Net Correlations Analysis (GSNCA), a multivariate differential coexpression test that accounts for the complete correlation structure between genes.
Results: In GSNCA, weight factors are assigned to genes in proportion to the genes' cross-correlations (intergene correlations). The problem of finding the weight vectors is formulated as an eigenvector problem with a unique solution. GSNCA tests the null hypothesis that for a gene set there is no difference in the weight vectors of the genes between two conditions. In simulation studies and the analyses of experimental data, we demonstrate that GSNCA, indeed, captures changes in the structure of genes' cross-correlations rather than differences in the averaged pairwise correlations. Thus, GSNCA infers differences in coexpression networks, however, bypassing method-dependent steps of network inference. As an additional result from GSNCA, we define hub genes as genes with the largest weights and show that these genes correspond frequently to major and specific pathway regulators, as well as to genes that are most affected by the biological difference between two conditions. In summary, GSNCA is a new approach for the analysis of differentially coexpressed pathways that also evaluates the importance of the genes in the pathways, thus providing unique information that may result in the generation of novel biological hypotheses.
Resumo:
This paper proposes millimeter wave (mmWave) mobile broadband for achieving secure communication in downlink cellular network. Analog beamforming with phase shifters is adopted for the mmWave transmission. The secrecy throughput is analyzed based on two different transmission modes, namely delay-tolerant transmission and delay-limited transmission. The impact of large antenna arrays at the mmWave frequencies on the secrecy throughput is examined. Numerical results corroborate our analysis and show that mmWave systems can enable significant secrecy improvement. Moreover, it is indicated that with large antenna arrays, multi-gigabit per second secure link at the mmWave frequencies can be reached in the delay-tolerant transmission mode and the adverse effect of secrecy outage vanishes in the delay-limited transmission mode.
Resumo:
In this paper, we study the information-theoretical security of a downlink multiuser cooperative relaying network with multiple intermediate amplify-and-forward (AF) relays, where there exist multiple eavesdroppers which can overhear the message. To prevent the wiretap and strength the network security, we select one best relay and user pair, so that the selected user can receive the message from the base station assisted by the selected relay. The relay and user selection is performed by maximizing the ratio of the received signal-to-noise ratio (SNR) at the user to the eavesdroppers, which is based on both the main and eavesdropper links. For the considered system, we derive the closed-form expression of the secrecy outage probability, and provide the asymptotic expression in high main-to-eavesdropper ratio (MER) region. From the asymptotic analysis, we can find that the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.
Resumo:
Coronary artery disease (CAD) is the commonest cause of death. Here, we report an association analysis in 63,746 CAD cases and 130,681 controls identifying 15 loci reaching genome-wide significance, taking the number of susceptibility loci for CAD to 46, and a further 104 independent variants (r(2)
Resumo:
This paper proposes relay selection in order to increase the physical layer security in multiuser cooperative relay networks with multiple amplify-and-forward (AF) relays, in the presence of multiple eavesdroppers. To strengthen the network security against eavesdropping attack, we present three criteria to select the best relay and user pair. Specifically, criterion I and II study the received signal-to-noise ratio (SNR) at the receivers, and perform the selection by maximizing the SNR ratio of the user to the eavesdroppers. To this end, criterion I relies on both the main and eavesdropper links, while criterion II relies on the main links only. Criterion III is the standard max-min selection criterion,
which maximizes the minimum of the dual-hop channel gains of main links. For the three selection criteria, we examine the system secrecy performance by deriving the analytical expressions for the secrecy outage probability. We also derive the asymptotic analysis for the secrecy outage probability with high main-to eavesdropper ratio (MER). From the asymptotic analysis, an interesting observation is reached: for each criterion, the system diversity order is equivalent to the number of relays regardless of the number of users and eavesdroppers.
Resumo:
In recent years, the embracement of smart devices carried or worn by people have transformed how society interact with one another. This trend has also been observed in the advancement of vehicular networks. Here, developments in wireless technologies for vehicle-to-vehicle (V2V) and vehicle-to-roadside (V2R) communications are leading to a new generation of vehicular networks. A natural extension of both types of networks will be their eventual wireless integration. Both people and vehicles will undoubtedly form integral parts of future mobile networks of people and things. Central to this will be the person-to-vehicle (P2V) communications channel. As the P2V channel will be subject to different signal propagation characteristics than either type of communication system considered in isolation, it is imperative the characteristics of the wireless channel must first be fully understood. To the best of the author's knowledge, this is a topic which has not yet been addressed in the open literature. In this paper we will present our most recent research on the statistical characterization of the 5.8 GHz person-to-vehicle channel in an urban environment.
Resumo:
Cancer is a complex disease that has proven to be difficult to understand on the single-gene level. For this reason a functional elucidation needs to take interactions among genes on a systems-level into account. In this study, we infer a colon cancer network from a large-scale gene expression data set by using the method BC3Net. We provide a structural and a functional analysis of this network and also connect its molecular interaction structure with the chromosomal locations of the genes enabling the definition of cis- and trans-interactions. Furthermore, we investigate the interaction of genes that can be found in close neighborhoods on the chromosomes to gain insight into regulatory mechanisms. To our knowledge this is the first study analyzing the genome-scale colon cancer network.
Resumo:
There is now a strong body of research that suggests that the form of the built environment can influence levels of physical activity, leading to an increasing interest in incorporating health objectives into spatial planning and regeneration policies and projects. There have been a number of strands to this research, one of which has sought to develop “objective” measurements of the built environment using Geographic Information Science (GIS) involving measures of connectivity and proximity to compare the relative “walkability” of different neighbourhoods. The development of the “walkability index” (e.g. Leslie et al 2007, Frank et al 2010) has become a popular indicator of spatial distribution of those features of the built environment that are considered to have the greatest positive influence on levels of physical activity. The success of this measure is built on its ability to succinctly capture built environment correlates of physical activity using routinely available spatial data, which includes using road centre lines as a basis of a proxy for connectivity.
This paper discusses two key aspects of the walkability index. First, it follows the suggestion of Chin et al (2008) that the use of a footpath network (where available), rather than road centre lines, may be far more effective in evaluating walkability. This may be particularly important for assessing changes in walkability arising from pedestrian-focused infrastructure projects, such as greenways. Second, the paper explores the implication of this for how connectivity can be measured. The paper takes six different measures of connectivity and first analyses the relationships between them and then tests their correlation with actual levels of physical activity of local residents in Belfast, Northern Ireland. The analysis finds that the best measurements appear to be intersection density and metric reach and uses this finding to discuss the implications of this for developing tools that may better support decision-making in spatial planning.
Resumo:
This letter proposes several relay selection policies for secure communication in cognitive decode-and-forward (DF) relay networks, where a pair of cognitive relays are opportunistically selected for security protection against eavesdropping. The first relay transmits the secrecy information to the destination,
and the second relay, as a friendly jammer, transmits the jamming signal to confound the eavesdropper. We present new exact closed-form expressions for the secrecy outage probability. Our analysis and simulation results strongly support our conclusion that the proposed relay selection policies can enhance the performance of secure cognitive radio. We also confirm that the error floor phenomenon is created in the absence of jamming.
Resumo:
In this paper, we analyze the performance of cognitive amplify-and-forward (AF) relay networks with beamforming under the peak interference power constraint of the primary user (PU). We focus on the scenario that beamforming is applied at the multi-antenna secondary transmitter and receiver. Also, the secondary relay network operates in channel state information-assisted AF mode, and the signals undergo independent Nakagami-m fading. In particular, closed-form expressions for the outage probability and symbol error rate (SER) of the considered network over Nakagami-m fading are presented. More importantly, asymptotic closed-form expressions for the outage probability and SER are derived. These tractable closed-form expressions for the network performance readily enable us to evaluate and examine the impact of network parameters on the system performance. Specifically, the impact of the number of antennas, the fading severity parameters, the channel mean powers, and the peak interference power is addressed. The asymptotic analysis manifests that the peak interference power constraint imposed on the secondary relay network has no effect on the diversity gain. However, the coding gain is affected by the fading parameters of the links from the primary receiver to the secondary relay network
Resumo:
Learning has an important position in the development of employees and their expertise. This article focuses on the role and utilization of intra and interorganizational formal and informal learning within different types of learning networks. Specifically, we investigate different types of networks (inter- or intraorganizational) and different types of learning (formal or informal) that can occur within such networks. Our qualitative case study is based on 46 expert interviews involving 49 interviewees, through which we explore how formal and informal learning was used in the development and implementation of quality improvement initiatives at a large public teaching hospital in Portugal. Our analysis suggests that formal and informal learning can take place within different types of learning networks that draw on internal resources as well as on the collaboration with external entities. The article argues that it is important for HRD managers, seeking to support organizational learning, to understand how different types of learning take place, and which features of learning networks support these processes.
Resumo:
BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.
METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.
RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.
CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.