111 resultados para NONUNIFORM IRRADIATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence suggests that genomic instability, which is an important step in carcinogenesis, may be important in the effectiveness of radiation as a carcinogen, particularly for high-LET radiations. Understanding the biological effects underpinning the risks associated with low doses of densely ionizing radiations is complicated in experimental systems by the Poisson distribution of particles that ran be delivered, In this study, we report an approach to determine the effect of the lowest possible cellular radiation dose of densely ionizing at particles, that of a single particle traversal. Using microbeam technology and an approach for immobilizing human T-lymphocytes, we have measured the effects of single alpha -particle traversals on the surviving progeny of cells. A significant increase in the proportion of aberrant cells is observed 12-13 population doublings after exposure, with a high level of chromatid-type aberrations, indicative of an instability phenotype, These data suggest that instability may be important in situations where even a single particle traverses human cells. (C) 2001 by Radiation Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular recovery from ionizing radiation (IR)-induced damage involves poly(ADP-ribose) polymerase (PARP-1 and PARP-2) activity, resulting in the induction of a signalling network responsible for the maintenance of genomic integrity. In the present work, a charged particle microbeam delivering 3.2 MeV protons from a Van de Graaff accelerator has been used to locally irradiate mammalian cells. We show the immediate response of PARPs to local irradiation, concomitant with the recruitment of ATM and Rad51 at sites of DNA damage, both proteins being involved in DNA strand break repair. We found a co-localization but no connection between two DNA damage-dependent post-translational modifications, namely poly(ADP-ribosyl)ation of nuclear proteins and phosphorylation of histone H2AX. Both of them, however, should be considered and used as bona fide immediate sensitive markers of IR damage in living cells. This technique thus provides a powerful approach aimed at understanding the interactions between the signals originating from sites of DNA damage and the subsequent activation of DNA strand break repair mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 109Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, osmium, cobalt, rhodium, and iridium metal nanoparticles (MNPs) have been reproducibly obtained by facile, rapid (3 min), and energysaving 10 W microwave irradiation (MWI) under an argon atmosphere from their metal–carbonyl precursors [Mx(CO)y] in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]). This MWI synthesis is compared to UV-photolytic (1000 W, 15 min) or conventional thermal decomposition (180–2508C, 6–12 h) of [Mx(CO)y] in ILs. The MWIobtained nanoparticles have a very small (<5 nm) and uniform size and are prepared without any additional stabilizers or capping molecules as long-term stable M-NP/IL dispersions (characterization by transmission electron microscopy (TEM), transmission electron diffraction (TED), and dynamic light scattering (DLS)). The ruthenium, rhodium, or iridium nanoparticle/IL dispersions are highly active
and easily recyclable catalysts for the biphasic liquid–liquid hydrogenation of cyclohexene to cyclohexane with activities of up to 522 (mol product)(mol Ru)1h1 and 884 (mol product)(molRh)1h1 and give almost quantitative conversion within 2 h at 10 bar H2 and 908C. Catalyst poisoning experiments with CS2 (0.05 equiv per Ru) suggest a heterogeneous surface catalysis of RuNPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of radiation-inducible promoters to drive transgene expression offers the possibility of temporal and spatial regulation of gene activation. This study assessed the potential of one such promoter element, p21(WAF1/CIP1) (WAF1), to drive expression of the noradrenaline transporter (NAT) gene, which conveys sensitivity to radioiodinated meta-iodobenzylguanidine (MIBG). An expression vector containing NAT under the control of the radiation-inducible WAF1 promoter (pWAF/NAT) was produced. The non-NAT expressing cell lines UVW (glioma) and HCT116 (colorectal cancer) were transfected with this construct to assess radiation-controlled WAF1 activation of the NAT gene. Transfection of UVW and HCT cells with pWAF/NAT conferred upon them the ability to accumulate [(131)I]MIBG, which led to increased sensitivity to the radiopharmaceutical. Pretreatment of transfected cells with ? radiation or the radiopharmaceuticals [(123)I]MIBG or [(131)I]MIBG induced dose- and time-dependent increases in subsequent [(131)I]MIBG uptake and led to enhanced efficacy of [(131)I]MIBG-mediated cell kill. Gene therapy using WAF1-driven expression of NAT has the potential to expand the use of this therapeutic modality to tumors that lack a radio-targetable feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Cardiac irradiation during left-sided breast radiotherapy may lead to
deleterious cardiac side effects. Using image guided radiotherapy, it is possible
to exclude the heart from treatment fields and monitor reproducibility of virtual simulation (VS) fields at treatment delivery using electronic portal imaging (EPI). Retrospectively, we evaluate the incidence of cardiac irradiation at VS and subsequent unintended cardiac irradiation during treatment.

Methods: Patients receiving left-sided radiotherapy to the breast or chest wall,
treated with a glancing photon field technique during a four-month period, were
included. VS images and EPIs during radiotherapy delivery were visually assessed.
The presence of any portion of the heart within the treatment field at VS or during treatment was recorded. Central lung distance and maximum heart distance were recorded.

Results: Of 128 patients, 45 (35.1%) had any portion of the heart within the
planned treatment field. Of these, inclusion of the heart was clinically unavoidable in 25 (55.6%). Of those with no heart included in the treatment fields at VS, 41 (49.4%) had presence of the heart as assessed on EPI during treatment.

Conclusion: Unintended cardiac irradiation during left-sided breast radiotherapy treatment occurs in a sizeable proportion of patients.

Advances in knowledge: Despite the use of three-dimensional computed tomography simulation and cardiac shielding, sizeable proportions of patients receiving left-sided breast cancer radiotherapy have unintended cardiac irradiation.