205 resultados para N-terminally blocked peptides
Resumo:
Nonenzymatic glycation of peptides and proteins by D-glucose has important implications in the pathogenesis of diabetes mellitus, particularly in the development of diabetic complications. However, no effective high-throughput methods exist for identifying proteins containing this low-abundance posttranslational modification in bottom-up proteomic studies. In this report, phenylboronate affinity chromatography was used in a two-step enrichment scheme to selectively isolate first glycated proteins and then glycated, tryptic peptides from human serum glycated in vitro. Enriched peptides were subsequently analyzed by alternating electron-transfer dissociation (ETD) and collision induced dissociation ( CID) tandem mass spectrometry. ETD fragmentation mode permitted identification of a significantly higher number of glycated peptides (87.6% of all identified peptides) versus CID mode (17.0% of all identified peptides), when utilizing enrichment on first the protein and then the peptide level. This study illustrates that phenylboronate affinity chromatography coupled with LC-MS/MS and using ETD as the fragmentation mode is an efficient approach for analysis of glycated proteins and may have broad application in studies of diabetes mellitus.
Resumo:
The presence of savory peptides in moromi has been investigated. Moromi was prepared by fermenting yellow soybean using Aspergillus oryzae as the starter at the first step (mold fermentation) and 20% brine solution at the next step (brine fermentation). The moromi was then ultrafiltered stepwise using membranes with MW cut-offs of 10,000, 3,000, and 500 Da, respectively. The fraction with MW <500 Da was chromatographed using Sephadex G-25 SF to yield four fractions, 1-4. Analysis of soluble peptides, NaCl content, alpha-amino nitrogen, amino acid composition, peptide profile using CE coupled with DAD, taste profile and free glutamic acid content, were performed for each fraction. Fraction 2 contained a relatively high total glutamic acid content, but a relatively low free glutamic acid content and had the highest umami taste. This fraction also had more peptides containing non-aromatic amino acids than the other fractions. The peptides present in fraction 2 may play a role, at least in part, in its intense umami taste.
Resumo:
We examined the association of common variants at the NPPA-NPPB locus with circulating concentrations of the natriuretic peptides, which have blood pressure-lowering properties. We genotyped SNPs at the NPPA-NPPB locus in 14,743 individuals of European ancestry, and identified associations of plasma atrial natriuretic peptide with rs5068 (P = 8 × 10 -70), rs198358 (P = 8 × 10 -30) and rs632793 (P = 2 × 10 -10), and of plasma B-type natriuretic peptide with rs5068 (P = 3 × 10 -12), rs198358 (P = 1 × 10 -25) and rs632793 (P = 2 × 10 -68). In 29,717 individuals, the alleles of rs5068 and rs198358 that showed association with increased circulating natriuretic peptide concentrations were also found to be associated with lower systolic (P = 2 × 10 -6 and 6 × 10 -5, respectively) and diastolic blood pressure (P = 1 × 10 -6 and 5 × 10 -5), as well as reduced odds of hypertension (OR = 0.85, 95% CI = 0.79-0.92, P = 4 × 10 -5; OR = 0.90, 95% CI = 0.85-0.95, P = 2 × 10 -4, respectively). Common genetic variants at the NPPA-NPPB locus found to be associated with circulating natriuretic peptide concentrations contribute to interindividual variation in blood pressure and hypertension.
Resumo:
increasing evidence from both clinical and experimental studies indicates that the insulin-releasing hormone, glucagon-like peptide-1 (GLP-1) may exert additional protective/reparative effects on the cardiovascular system. The aim of this study was to examine vasorelaxant effects of GLP-1(7-36)amide, three structurally-related peptides and a non-peptide GLP-1 agonist in rat aorta. Interestingly, all GLP-1 compounds, including the established GLP-1 receptor antagonist, exendin (9-39) caused concentration-dependent relaxation. Mechanistic studies employing hyperpolarising concentrations of potassium or glybenclamide revealed that these relaxant effects are mediated via specific activation of ATP-sensitive potassium channels. Further experiments using a specific membrane-permeable cyclic AMP (cAMP) antagonist, and demonstration of increased cAMP production in response to GLP-1 illustrated the critical importance of this pathway. These data significantly extend previous observations suggesting that GLP-1 may modulate vascular function, and indicate that this effect may be mediated by the GLP-1 receptor. However, further studies are required in order to establish whether GLP-1 related agents may confer additional cardiovascular benefits to diabetic patients. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
By integrating systematic peptidome and transcriptome studies of the defensive skin secretion of the Central American red-eyed leaf frog, Agalychnis callidryas, we have identified novel members of three previously described antimicrobial peptide families, a 27-mer dermaseptin-related peptide (designated DRP-AC4), a 33-mer adenoregulin-related peptide (designated ARP-AC1) and most unusually, a 27-mer caerin-related peptide (designated CRP-AC1). While dermaseptin and adenoregulin were originally isolated from phyllomedusine leaf frogs, the caerins, until now. had only been described in Australian frogs of the genus, Litoria. Both the dermaseptin and adenoregulin were C-terminally amidated and lacked the C-terminal tripeptide of the biosynthetic precursor sequence. In contrast, the caerin-related peptide, unlike the majority of Litoria analogs. was not C-terminally amidated. The present data emphasize the need for structural characterization of mature peptides to ensure that unexpected precursor cleavages and/or post-translational modifications do not produce mature peptides that differ in structure to those predicted from cloned biosynthetic precursor cDNA. Additionally, systematic study of the secretory peptidome can produce unexpected results such as the CRP described here that may have phylogenetic implications. It is thus of the utmost importance in the functional evaluation of novel peptides that the primary structure of the mature peptide is unequivocally established - something that is often facilitated by cloning biosynthetic precursor cDNAs but obviously not reliable using such data alone. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Amphibian defensive skin secretions are known to contain a plethora of biologically-active peptides that are often structural and functional analogues of vertebrate neuropeptides. Here we report the structures of two invertebrate neuropeptide analogues, IPPQFMRF amide (IF-8 amide) and EGDEDEFLRF amide (EF-10 amide), from the defensive skin secretions of two different species of African hyperoliid frogs, Kassina maculata and Phylictimantis verrucosus, respectively. These represent the first canonical FMRF amide-related peptides (FaRPs) from a vertebrate source. The cDNA encoding IF-8 amide was cloned from a skin secretion library and found to contain a single copy of the peptide located at the C-terminus of a 58 amino acid residue open-reading frame. These data extend the potential targets of the defensive arsenal of amphibian tegumental secretions to parasitic/predatory invertebrates and the novel peptides described may represent the first vertebrate peptidic endectocides.
Resumo:
Here we describe the structural and functional characterization of a novel myotropic peptide, sauvatide, from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. Sauvatide is a C-terminally amidated decapeptide with the following primary structure – LRPAILVRTKamide – monoisotopic mass 1164.77 Da, which was found to contract the smooth muscle of rat urinary bladder with an EC50 of 2.2 nM. The sauvatide precursor, deduced from cloned skin cDNA, consists of 62 amino acid residues with a single copy of sauvatide located near the C-terminus. The mature peptide is generated from the precursor by cleavage at a classical –KR-cleavage site located proximal to the N-terminus and by removal of a –GKGK sequence at the C-terminus, the first glycyl residue acting as amide donor. Amphibian skin secretions thus continue to be a source of novel and potent biologically active peptides acting through functional targets in mammalian tissues.
Resumo:
Peptidomics is a powerful set of tools for the identification, structural elucidation and discovery of novel regulatory peptides and for monitoring the degradation pathways of structurally and catalytically important proteins. Amphibian skin secretions, arising from specialized granular glands, often contain complex peptidomes containing many components of entirely novel structure and unique site-substituted analogues of known peptide families. Following the discovery that the granular gland transcriptome is present in such secretions in a PCR-amenable form, we designed a strategy for peptide structural characterization involving the integration of ‘shotgun’ cloning of cDNAs encoding peptide precursors, deduction of putative bioactive peptide structures, and confirmation of these structures using tandem MS/MS sequencing. Here, we illustrate this strategy by means of elucidation of the primary structures of nigrocin-2 homologues from the defensive skin secretions of four species of Chinese Odorrana frogs, O. schmackeri, O. livida, O. hejiangensis and O. versabilis. Synthetic replicates of the peptides were found to possess antimicrobial activity. Nigrocin-2 peptides occur widely in the skin secretions of Asian ranid frogs and in those of the Odorrana group, and are particularly well-represented and of diverse structure in some species. Integration of the molecular analytical technologies described provides a means for rapid structural characterization of novel peptides from complex natural libraries in the absence of systematic online database information.
Resumo:
Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards
Resumo:
Amphibian skin secretions are rich sources of cationic amphipathic peptides which often possess potent and broad-spectrum antimicrobial activity. However, the venoms of other animals such as hymenopteran insects, also contain peptides with these characteristics and the literature is unclear as to their antimicrobial potential. Here we subjected the venom of the European hornet, Vespa crabro, to reverse phase HPLC fractionation followed by screening of aliquots of individual fractions in bacterial zonal inhibition assays. Two major peptides possessing activity in these assays were further purified by HPLC and subjected to MALDI-TOF MS analysis and MS/MS fragmentation using an ESI mass spectrometer. The peptides were identified as mastoparan C (LNLKALLAVAKKILamide) and crabrolin (FLPLILRKIVTALamide). Replicates of both peptides were synthesised by solid-phase methodology and mean inhibitory concentrations (MICs) established against Staphylococcus aureus and Escherichia coli. Mastoparan C was found to be a potent antimicrobial with MIC values of 2 µM and 4 µM against S. aureus and E. coli, respectively. Crabrolin was found to be less potent with MIC values of > 160 µM and 40 µM for S. aureus and E. coli. Hornet venom thus contains a potent antimicrobial peptide that has been unambiguously identified as mastoparan C, a peptide that is known to affect profound histamine release from mast cells and to generally activate membrane G protein-linked receptors. It is thus highly probable that its antimicrobial effects, like those previously documented, are a result of a generalized membrane interactive and disruptive function — perhaps reflective of the authentic role of amphibian skin antimicrobials.
Resumo:
The skin secretions produced by many amphibians are formidable chemical/biological weapons deployed as a defence against predators. Bioactive peptides are often the predominant class of biochemical within these secretions and the inventory of such remains incomplete with each individual taxon producing unique cocktails contained within which are some signature peptides, such as bradykinins and tachykinins. These secretions have been the source of many peptides subsequently found to have structural homologues in vertebrate neuroendocrine systems (bombesin/GRP; sauvagine/CRF; caerulein/CCK) and vice versa (bradykinin, CGRP, NMU). They are thus unequivocally intriguing resources for novel bioactive peptide discovery. Here we describe a novel 22-mer amidated peptide, named GK-22 amide (N-terminal Gly (G) and C-terminal Lys (K) amide) with an internal disulphide bridge between Cys (C) 11 and 20 from the skin secretion of Odorrana versabilis. Molecular cloning indicated that it is encoded as a single copy on a biosynthetic precursor of 59 amino acid residues consisting of a signal peptide, an acidic amino acid residue-rich spacer domain and a mature peptide encoding domain flanked N-terminally by a classical -Lys-Arg- (KR) propeptide convertase processing site and C-terminally by a Gly (G) residue amide donor. A synthetic replicate of this peptide produced potent and dose-dependent contraction of the smooth muscle of rat urinary bladder. GK-22 amide thus represents the prototype of a novel class of myotropic peptide from amphibian skin and its discovery illustrates the continuing potential of this resource to this end.
Resumo:
Venom of the Gila Monster (Heloderma suspectum) has proven to be an unlikely source of lead compounds (exendins) for the development of new injectable peptide therapeutics for the treatment of Type 2 diabetes. However, no systematic searches for new classes of bioactive peptides in lizard venom have appeared until recently. Here we describe the discovery of a new class of peptides – the helokinestatins – from H. suspectum venom, their structural characterisation and that of their biosynthetic precursors from cloned cDNA. In addition, we have subjected members of the family to preliminary pharmacological characterisation. Helokinestatins 1–6 are a family of proline-rich peptides containing 10–15 amino acid residues terminating in a common -Pro-Arg.OH motif. They are encoded in tandem within two virtually identical biosynthetic precursors of 177 and 178 amino acid residues, differing by only a single Pro residue. Each precursor also encodes a single copy of a C-type natriuretic peptide located at the C-terminus. Synthetic replicates of all helokinestatins were shown to be devoid of any direct action on the smooth muscle of rat tail artery but were found to be potent inhibitors of bradykinin-induced relaxation in this preparation in a manner that is suggestive of a non-competitive mechanism. Helokinestatin-3 (VPPPPLQMPLIPR) and helokinestatin-5 (VPPPLQMPLIPR) were found to be most potent in this respect causing almost complete inhibition of bradykinin-induced relaxation. Helokinestatins and BPPs may have a shared evolutionary history but the former do not inhibit ACE. The bradykinin inhibitory potential of helokinestatins may be exploited in the local control of chronic inflammation.